OFFSET
1,1
COMMENTS
The fourth powers are not necessarily distinct.
If n is in the sequence, then so is k^4*n for every k.
The sum of two nonzero fourth powers is never a fourth power (a case of Fermat's last theorem).
LINKS
Robert Israel, Table of n, a(n) for n = 1..1072
EXAMPLE
a(3) = 76832 is in the sequence because 76832 = 14^4 + 14^4 = 6^4 + 10^4 + 16^4.
a(6) = 617057 is in the sequence because 617057 = 7^4 + 28^4 = 3^4 + 20^4 + 26^4.
MAPLE
N:= 10^8: # for terms <= N
F1:= {seq(i^4, i=1..floor(N^(1/4)))}: n1:= nops(F1):
F2:= select(`<=`, {seq(seq(F1[i]+F1[j], i=1..j), j=1..nops(F1))}, N):
F3:= select(`<=`, {seq(seq(s+t, s=F1), t=F2)}, N):
sort(convert(F3 intersect F2, list));
PROG
(Python)
def aupto(lim):
p1 = set(i**4 for i in range(1, int(lim**.25)+2) if i**4 <= lim)
p2 = set(a+b for a in p1 for b in p1 if a+b <= lim)
p3 = set(apb+c for apb in p2 for c in p1 if apb+c <= lim)
return sorted(p3 & p2)
print(aupto(5*10**7)) # Michael S. Branicky, Mar 18 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Jul 24 2020
STATUS
approved