login
A336536
Numbers n that can be written as both the sum of two nonzero fourth powers and the sum of three nonzero fourth powers.
3
4802, 57122, 76832, 260642, 388962, 617057, 913952, 1229312, 1847042, 1957682, 3001250, 3502322, 3748322, 3959297, 4170272, 4626882, 6223392, 6837602, 6959682, 9872912, 11529602, 14623232, 19668992, 21112002, 27691682, 29552672, 31322912, 31505922, 35701250, 40127377, 40302242, 46712801, 48020000, 48355137
OFFSET
1,1
COMMENTS
The fourth powers are not necessarily distinct.
If n is in the sequence, then so is k^4*n for every k.
The sum of two nonzero fourth powers is never a fourth power (a case of Fermat's last theorem).
LINKS
EXAMPLE
a(3) = 76832 is in the sequence because 76832 = 14^4 + 14^4 = 6^4 + 10^4 + 16^4.
a(6) = 617057 is in the sequence because 617057 = 7^4 + 28^4 = 3^4 + 20^4 + 26^4.
MAPLE
N:= 10^8: # for terms <= N
F1:= {seq(i^4, i=1..floor(N^(1/4)))}: n1:= nops(F1):
F2:= select(`<=`, {seq(seq(F1[i]+F1[j], i=1..j), j=1..nops(F1))}, N):
F3:= select(`<=`, {seq(seq(s+t, s=F1), t=F2)}, N):
sort(convert(F3 intersect F2, list));
PROG
(Python)
def aupto(lim):
p1 = set(i**4 for i in range(1, int(lim**.25)+2) if i**4 <= lim)
p2 = set(a+b for a in p1 for b in p1 if a+b <= lim)
p3 = set(apb+c for apb in p2 for c in p1 if apb+c <= lim)
return sorted(p3 & p2)
print(aupto(5*10**7)) # Michael S. Branicky, Mar 18 2021
CROSSREFS
Intersection of A003336 and A003337.
Sequence in context: A157628 A214146 A085322 * A035786 A108010 A029553
KEYWORD
nonn
AUTHOR
Robert Israel, Jul 24 2020
STATUS
approved