OFFSET
0,3
LINKS
Seiichi Manyama, Antidiagonals n = 0..139, flattened
FORMULA
G.f. A_k(x) of column k satisfies A_k(x) = 1 + x * A_k(x)^k * (1 + A_k(x)).
T(n,k) = (1/n) * Sum_{j=1..n} 2^j * binomial(n,j) * binomial(k*n,j-1) for n > 0.
T(n,k) = (1/(k*n+1)) * Sum_{j=0..n} binomial(k*n+1,j) * binomial((k+1)*n-j,n-j).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, ...
2, 6, 10, 14, 18, 22, ...
2, 22, 66, 134, 226, 342, ...
2, 90, 498, 1482, 3298, 6202, ...
2, 394, 4066, 17818, 52450, 122762, ...
MATHEMATICA
T[n_, k_] := Sum[Binomial[n, j] * Binomial[k*n+j+1, n]/(k*n+j+1), {j, 0, n}]; Table[T[k, n-k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 01 2021 *)
PROG
(PARI) T(n, k) = sum(j=0, n, binomial(k*n+1, j)*binomial((k+1)*n-j, n-j))/(k*n+1);
CROSSREFS
Main diagonal gives A336537.
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jul 25 2020
STATUS
approved