login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027307 Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis) and where each step is (2,1), (1,2) or (1,-1). 63
1, 2, 10, 66, 498, 4066, 34970, 312066, 2862562, 26824386, 255680170, 2471150402, 24161357010, 238552980386, 2375085745978, 23818652359682, 240382621607874, 2439561132029314, 24881261270812490, 254892699352950850 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

These are the 3-Schroeder numbers according to Yang-Jiang (2021). - N. J. A. Sloane, Mar 28 2021

Equals row sums of triangle A104978 which has g.f. F(x,y) that satisfies: F = 1 + x*F^2 + x*y*F^3. - Paul D. Hanna, Mar 30 2005

a(n) counts ordered complete ternary trees with 2*n-1 leaves, where the internal vertices come in two colors and such that each vertex and its rightmost child have different colors. See [Drake, Example 1.6.9]. An example is given below. - Peter Bala, Sep 29 2011

REFERENCES

Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.

Gi-Sang Cheon, S.-T. Jin and L. W. Shapiro, A combinatorial equivalence relation for formal power series, Linear Algebra and its Applications, Available online 30 March 2015.

Emeric Deutsch, Problem 10658, American Math. Monthly, 107, 2000, 368-370.

B. Drake, An inversion theorem for labeled trees and some limits of areas under lattice paths (Example 1.6.9), A dissertation presented to the Faculty of the Graduate School of Arts and Sciences of Brandeis University.

Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.

J. Winter, M. M. Bonsangue and J. J. M. M. Rutten, Context-free coalgebras, 2013.

Anssi Yli-Jyrä and Carlos Gómez-Rodríguez, Generic Axiomatization of Families of Noncrossing Graphs in Dependency Parsing, arXiv:1706.03357 [cs.CL], 2017.

Jian Zhou, On Some Mathematics Related to the Interpolating Statistics, arXiv:2108.10514 [math-ph], 2021.

FORMULA

G.f.: (2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3.

a(n) = (1/n) * Sum_{i=0..n-1} 2^(i+1)*binomial(2*n, i)*binomial(n, i+1)), n>0.

a(n) = 2*A034015(n-1), n>0.

a(n) = Sum_{k=0..n} C(2*n+k, n+2*k)*C(n+2*k, k)/(n+k+1). - Paul D. Hanna, Mar 30 2005

Given g.f. A(x), y=A(x)x satisfies 0=f(x, y) where f(x, y)=x(x-y)+(x+y)y^2 . - Michael Somos, May 23 2005

Series reversion of x(Sum_{k>=0} a(k)x^k) is x(Sum_{k>=0} A085403(k)x^k).

G.f. A(x) satisfies A(x)=A006318(x*A(x)). - Vladimir Kruchinin, Apr 18 2011

The function B(x) = x*A(x^2) satisfies B(x) = x+x*B(x)^2+B(x)^3 and hence B(x) = compositional inverse of x*(1-x^2)/(1+x^2) = x+2*x^3+10*x^5+66*x^7+.... Let f(x) = (1+x^2)^2/(1-4*x^2+x^4) and let D be the operator f(x)*d/dx. Then a(n) equals 1/(2*n+1)!*D^(2*n)(f(x)) evaluated at x = 0. For a refinement of this sequence see A196201. - Peter Bala, Sep 29 2011

D-finite with recurrence: 2*n*(2*n+1)*a(n) = (46*n^2-49*n+12)*a(n-1) - 3*(6*n^2-26*n+27)*a(n-2) - (n-3)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 08 2012

a(n) ~ sqrt(50+30*sqrt(5))*((11+5*sqrt(5))/2)^n/(20*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012. Equivalently, a(n) ~ phi^(5*n + 1) / (2 * 5^(1/4) * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 07 2021

a(n) = 2*hypergeom([1 - n, -2*n], [2], 2) for n >= 1. - Peter Luschny, Nov 08 2021

EXAMPLE

a(3) = 10. Internal vertices colored either b(lack) or w(hite); 5 uncolored leaf vertices shown as o.

........b...........b.............w...........w.....

......./|\........./|\.........../|\........./|\....

....../.|.\......./.|.\........./.|.\......./.|.\...

.....b..o..o.....o..b..o.......w..o..o.....o..w..o..

..../|\............/|\......../|\............/|\....

.../.|.\........../.|.\....../.|.\........../.|.\...

..o..o..o........o..o..o....o..o..o........o..o..o..

....................................................

........b...........b.............w...........w.....

......./|\........./|\.........../|\........./|\....

....../.|.\......./.|.\........./.|.\......./.|.\...

.....w..o..o.....o..w..o.......b..o..o.....o..b..o..

..../|\............/|\......../|\............/|\....

.../.|.\........../.|.\....../.|.\........../.|.\...

..o..o..o........o..o..o....o..o..o........o..o..o..

....................................................

........b...........w..........

......./|\........./|\.........

....../.|.\......./.|.\........

.....o..o..w.....o..o..b.......

........../|\........./|\......

........./.|.\......./.|.\.....

........o..o..o.....o..o..o....

...............................

MATHEMATICA

a[n_] := ((n+1)*(2n)!*Hypergeometric2F1[-n, 2n+1, n+2, -1]) / (n+1)!^2;

Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Nov 14 2011, after Pari *)

a[n_] := If[n == 0, 1, 2*Hypergeometric2F1[1 - n, -2 n, 2, 2]];

Table[a[n], {n, 0, 19}]  (* Peter Luschny, Nov 08 2021 *)

PROG

(PARI) a(n)=if(n<1, n==0, sum(i=0, n-1, 2^(i+1)*binomial(2*n, i)*binomial(n, i+1))/n)

(PARI) a(n)=sum(k=0, n, binomial(2*n+k, n+2*k)*binomial(n+2*k, k)/(n+k+1)) \\ Paul D. Hanna

(PARI) a(n)=sum(k=0, n, binomial(n, k)*binomial(2*n+k+1, n)/(2*n+k+1) ) /* Michael Somos, May 23 2005 */

CROSSREFS

Cf. A104978. A196201.

The sequences listed in Yang-Jiang's Table 1 appear to be A006318, A001003, A027307, A034015, A144097, A243675, A260332, A243676. - N. J. A. Sloane, Mar 28 2021

Apart from first term, this is 2*A034015. - N. J. A. Sloane, Mar 28 2021

Sequence in context: A340467 A278459 A278461 * A278460 A278462 A060206

Adjacent sequences:  A027304 A027305 A027306 * A027308 A027309 A027310

KEYWORD

nonn

AUTHOR

Emeric Deutsch

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 12:38 EDT 2022. Contains 353746 sequences. (Running on oeis4.)