The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027307 Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis) and where each step is (2,1), (1,2) or (1,-1). 73
 1, 2, 10, 66, 498, 4066, 34970, 312066, 2862562, 26824386, 255680170, 2471150402, 24161357010, 238552980386, 2375085745978, 23818652359682, 240382621607874, 2439561132029314, 24881261270812490, 254892699352950850 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS These are the 3-Schroeder numbers according to Yang-Jiang (2021). - N. J. A. Sloane, Mar 28 2021 Equals row sums of triangle A104978 which has g.f. F(x,y) that satisfies: F = 1 + x*F^2 + x*y*F^3. - Paul D. Hanna, Mar 30 2005 a(n) counts ordered complete ternary trees with 2*n + 1 leaves, where the internal vertices come in two colors and such that each vertex and its rightmost child have different colors. See [Drake, Example 1.6.9]. An example is given below. - Peter Bala, Sep 29 2011 a(n) for n >= 1 is the number of compact coalescent histories for matching lodgepole gene trees and species trees with n cherries and 2n+1 leaves. - Noah A Rosenberg, Jun 21 2022 a(n) is the maximum number of distinct sets that can be obtained as complete parenthesizations of “S_1 union S_2 intersect S_3 union S_4 intersect S_5 union ... union S_{2*n} intersect S_{2*n+1}”, where n union and n intersection operations alternate, starting with a union, and S_1, S_2, ... , S_{2*n+1} are sets. - Alexander Burstein, Nov 22 2023 REFERENCES Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021. Gi-Sang Cheon, S.-T. Jin and L. W. Shapiro, A combinatorial equivalence relation for formal power series, Linear Algebra and its Applications, Available online 30 March 2015. Emeric Deutsch, Problem 10658, American Math. Monthly, 107, 2000, 368-370. F. Disanto and N. A. Rosenberg, Enumeration of compact coalescent histories for matching gene trees and species trees, J. Math. Biol 78 (2019), 155-188. B. Drake, An inversion theorem for labeled trees and some limits of areas under lattice paths (Example 1.6.9), A dissertation presented to the Faculty of the Graduate School of Arts and Sciences of Brandeis University. Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019. J. Winter, M. M. Bonsangue and J. J. M. M. Rutten, Context-free coalgebras, 2013. Sheng-liang Yang and Mei-yang Jiang, Pattern avoiding problems on the hybrid d-trees, J. Lanzhou Univ. Tech., (China, 2023) Vol. 49, No. 2, 144-150. (in Mandarin) Anssi Yli-Jyrä and Carlos Gómez-Rodríguez, Generic Axiomatization of Families of Noncrossing Graphs in Dependency Parsing, arXiv:1706.03357 [cs.CL], 2017. Jian Zhou, On Some Mathematics Related to the Interpolating Statistics, arXiv:2108.10514 [math-ph], 2021. FORMULA G.f.: (2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3. a(n) = (1/n) * Sum_{i=0..n-1} 2^(i+1)*binomial(2*n, i)*binomial(n, i+1), n>0. a(n) = 2*A034015(n-1), n>0. a(n) = Sum_{k=0..n} C(2*n+k, n+2*k)*C(n+2*k, k)/(n+k+1). - Paul D. Hanna, Mar 30 2005 Given g.f. A(x), y=A(x)x satisfies 0=f(x, y) where f(x, y)=x(x-y)+(x+y)y^2 . - Michael Somos, May 23 2005 Series reversion of x(Sum_{k>=0} a(k)x^k) is x(Sum_{k>=0} A085403(k)x^k). G.f. A(x) satisfies A(x)=A006318(x*A(x)). - Vladimir Kruchinin, Apr 18 2011 The function B(x) = x*A(x^2) satisfies B(x) = x+x*B(x)^2+B(x)^3 and hence B(x) = compositional inverse of x*(1-x^2)/(1+x^2) = x+2*x^3+10*x^5+66*x^7+.... Let f(x) = (1+x^2)^2/(1-4*x^2+x^4) and let D be the operator f(x)*d/dx. Then a(n) equals 1/(2*n+1)!*D^(2*n)(f(x)) evaluated at x = 0. For a refinement of this sequence see A196201. - Peter Bala, Sep 29 2011 D-finite with recurrence: 2*n*(2*n+1)*a(n) = (46*n^2-49*n+12)*a(n-1) - 3*(6*n^2-26*n+27)*a(n-2) - (n-3)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 08 2012 a(n) ~ sqrt(50+30*sqrt(5))*((11+5*sqrt(5))/2)^n/(20*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012. Equivalently, a(n) ~ phi^(5*n + 1) / (2 * 5^(1/4) * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 07 2021 a(n) = 2*hypergeom([1 - n, -2*n], [2], 2) for n >= 1. - Peter Luschny, Nov 08 2021 From Peter Bala, Jun 16 2023: (Start) P-recursive: n*(2*n + 1)*(5*n - 7)*a(n) = (110*n^3 - 264*n^2 + 181*n - 36)*a(n-1) + (n - 2)*(2*n - 3)*(5*n - 2)*a(n-2) with a(0) = 1 and a(1) = 2. The g.f. A(x) = 1 + 2*x + 10*x^2 + 66*x^3 + ... satisfies A(x)^2 = (1/x) * the series reversion of x*((1 - x)/(1 + x))^2. Define b(n) = [x^(2*n)] ( (1 + x)/(1 - x) )^n = (1/2) * [x^n] ((1 + x)/(1 - x))^(2*n) = A103885(n). Then A(x) = exp( Sum_{n >= 1} b(n)*x^n/n ). (End) a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * 2^(n-k) * binomial(n,k) * binomial(3*n-k,n-1-k) for n > 0. - Seiichi Manyama, Aug 09 2023 EXAMPLE a(2) = 10. Internal vertices colored either b(lack) or w(hite); 5 uncolored leaf vertices shown as o. ........b...........b.............w...........w..... ......./|\........./|\.........../|\........./|\.... ....../.|.\......./.|.\........./.|.\......./.|.\... .....b..o..o.....o..b..o.......w..o..o.....o..w..o.. ..../|\............/|\......../|\............/|\.... .../.|.\........../.|.\....../.|.\........../.|.\... ..o..o..o........o..o..o....o..o..o........o..o..o.. .................................................... ........b...........b.............w...........w..... ......./|\........./|\.........../|\........./|\.... ....../.|.\......./.|.\........./.|.\......./.|.\... .....w..o..o.....o..w..o.......b..o..o.....o..b..o.. ..../|\............/|\......../|\............/|\.... .../.|.\........../.|.\....../.|.\........../.|.\... ..o..o..o........o..o..o....o..o..o........o..o..o.. .................................................... ........b...........w.......... ......./|\........./|\......... ....../.|.\......./.|.\........ .....o..o..w.....o..o..b....... ........../|\........./|\...... ........./.|.\......./.|.\..... ........o..o..o.....o..o..o.... ............................... MATHEMATICA a[n_] := ((n+1)*(2n)!*Hypergeometric2F1[-n, 2n+1, n+2, -1]) / (n+1)!^2; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Nov 14 2011, after Pari *) a[n_] := If[n == 0, 1, 2*Hypergeometric2F1[1 - n, -2 n, 2, 2]]; Table[a[n], {n, 0, 19}] (* Peter Luschny, Nov 08 2021 *) PROG (PARI) a(n)=if(n<1, n==0, sum(i=0, n-1, 2^(i+1)*binomial(2*n, i)*binomial(n, i+1))/n) (PARI) a(n)=sum(k=0, n, binomial(2*n+k, n+2*k)*binomial(n+2*k, k)/(n+k+1)) \\ Paul D. Hanna (PARI) a(n)=sum(k=0, n, binomial(n, k)*binomial(2*n+k+1, n)/(2*n+k+1) ) /* Michael Somos, May 23 2005 */ CROSSREFS Cf. A104978. A196201. The sequences listed in Yang-Jiang's Table 1 appear to be A006318, A001003, A027307, A034015, A144097, A243675, A260332, A243676. - N. J. A. Sloane, Mar 28 2021 Apart from first term, this is 2*A034015. - N. J. A. Sloane, Mar 28 2021 Sequence in context: A278459 A278461 A372580 * A373325 A278460 A278462 Adjacent sequences: A027304 A027305 A027306 * A027308 A027309 A027310 KEYWORD nonn,easy,changed AUTHOR Emeric Deutsch STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 12 04:50 EDT 2024. Contains 375085 sequences. (Running on oeis4.)