login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034015
Small 3-Schroeder numbers: a(n) = A027307(n+1)/2.
14
1, 5, 33, 249, 2033, 17485, 156033, 1431281, 13412193, 127840085, 1235575201, 12080678505, 119276490193, 1187542872989, 11909326179841, 120191310803937, 1219780566014657, 12440630635406245, 127446349676475425, 1310820823328281561, 13530833791486094769
OFFSET
0,2
COMMENTS
Series reversion of x*(Sum_{k>=0} a(k)(-x^2)^k) is Sum_{k odd} C(k)x^k where C() is Catalan numbers A000108.
Series reversion of x*(Sum_{k>=0} a(k)(-x)^k) is A000337(x). (Michael Somos)
This sequence should really have started with a(0)=1, a(1)=1, a(2)=5, a(3)=33, ..., but the present offset is too well-established. - N. J. A. Sloane, Mar 28 2021
This is the number of hypoplactic classes of 2-parking functions of size n+1. - Jun Yan, Apr 13 2024
REFERENCES
Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.
LINKS
J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014-2020.
Jun Yan, Results on pattern avoidance in parking functions, arXiv preprint arXiv:2404.07958 [math.CO], 2024. See Theorem 4.4.
FORMULA
a(n) = Sum_{i=0..n} Sum_{j=0..i} (-2)^(n-i)*binomial(i,j)*binomial(2i+j, n)*binomial(n+1,i)/(n+1) (conjectured). - Michael D. Weiner, May 25 2017
Yang & Jiang (2021) give an explicit formula for a(n) in Theorems 2.4 and 2.9. - N. J. A. Sloane, Mar 28 2021 [This formula is: a(n) = (1/(n + 1)) * Sum_{k=1..n+1} binomial(2*n + 2, k - 1) * binomial(n + 1, k)*2^(k - 1). - Jun Yan, Apr 13 2024]
a(n) = hypergeom([-n, -2*(n + 1)], [2], 2). - Peter Luschny, Nov 08 2021
a(n) ~ phi^(5*n + 6) / (4 * 5^(1/4) * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Nov 08 2021
D-finite with recurrence +2*(2*n+3)*(n+1)*a(n) +(-46*n^2-43*n-9)*a(n-1) +3*(6*n^2-14*n+7)*a(n-2) +(2*n-3)*(n-2)*a(n-3)=0. - R. J. Mathar, Aug 01 2022
Let D(n) be the set of 2-Dyck paths that have n up-steps of size 2 and 2n down-steps of size 1 and never go below the x-axis. For every d in D(n), let peak(d) be the number of peaks in d. Then a(n) = Sum_{d in D(n+1)}2^(peak(d) - 1). - Jun Yan, Apr 13 2024
a(n) = (-1)^(n) * Jacobi_P(n, 1, n+2, -3)/(n+1). - Peter Bala, Sep 08 2024
MAPLE
a:= proc(n) option remember; `if`(n<2, 4*n+1,
((110*n^3+66*n^2-17*n-9) *a(n-1)
+(n-1)*(2*n-1)*(5*n+3) *a(n-2)) /
((2*n+3)*(5*n-2)*(n+1)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jun 22 2014
MATHEMATICA
a[n_] := If[n<0, 0, Sum[2^i*Binomial[2*n+2, i]*Binomial[n+1, i+1]/(n+1), {i, 0, n}]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Oct 13 2014, after PARI *)
a[n_] := Hypergeometric2F1[-n, -2 (n + 1), 2, 2];
Table[a[n], {n, 0, 20}] (* Peter Luschny, Nov 08 2021 *)
PROG
(PARI) a(n)=if(n<0, 0, sum(i=0, n, 2^i*binomial(2*n+2, i)*binomial(n+1, i+1))/(n+1))
CROSSREFS
Part of a family indexed by m: m=2 (A001003), m=3 is this sequence, m=4 is A243675, ....
The sequences listed in Yang-Jiang's Table 1 appear to be A006318, A001003, A027307, A034015, A144097, A243675, A260332, A243676. - N. J. A. Sloane, Mar 28 2021
Apart from the first term, this is A027307/2. - N. J. A. Sloane, Mar 28 2021
Sequence in context: A084771 A153398 A242522 * A268563 A056159 A364792
KEYWORD
nonn,easy
STATUS
approved