login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364792
G.f. satisfies A(x) = 1 + x*A(x)^4 / (1 - x*A(x)^2).
3
1, 1, 5, 33, 250, 2054, 17800, 160183, 1482535, 14022415, 134943095, 1317046306, 13005842030, 129708875695, 1304588594925, 13217663310305, 134775670244250, 1382019265706377, 14242560597119165, 147435736533094415, 1532365596794307010
OFFSET
0,3
FORMULA
a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(4*n-2*k,n-1-k) for n > 0.
D-finite with recurrence 3*n*(36653*n-48128)*(3*n-1)*(3*n+1)*a(n) +5*(-2160545*n^4 +5139476*n^3 -2463019*n^2 -1385144*n +913296)*a(n-1) +4*(-948403*n^4 +17991137*n^3 -77629283*n^2 +126107767*n -70578450)*a(n-2) +10*(n-3)*(599072*n^3 -5090881*n^2 +13501042*n -11263100)*a(n-3) -50*(6861*n-12886)*(n-3) *(n-4)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Aug 10 2023
MAPLE
A364792 := proc(n)
if n = 0 then
1;
else
add( binomial(n, k) * binomial(4*n-2*k, n-1-k), k=0..n-1) ;
%/n ;
end if ;
end proc:
seq(A364792(n), n=0..80); # R. J. Mathar, Aug 10 2023
PROG
(PARI) a(n) = if(n==0, 1, sum(k=0, n-1, binomial(n, k)*binomial(4*n-2*k, n-1-k))/n);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 08 2023
STATUS
approved