OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..972
FORMULA
a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(4*n-3*k,n-1-k) for n > 0.
From Seiichi Manyama, Dec 05 2024: (Start)
G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^3/(1 - x*A(x))).
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r). (End)
PROG
(PARI) a(n) = if(n==0, 1, sum(k=0, n-1, binomial(n, k)*binomial(4*n-3*k, n-1-k))/n);
(PARI) a(n, r=1, s=1, t=4, u=1) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r)); \\ Seiichi Manyama, Dec 05 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 05 2023
STATUS
approved