login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364750
Integers k such that A000010(k) <= A008480(k).
0
1, 2, 6, 3326400, 4989600, 6652800, 9979200, 11793600, 19958400, 21621600, 23284800, 23587200, 25945920, 29937600, 33264000, 34927200, 35380800, 39916800, 43243200, 46569600, 47174400, 49896000, 51891840, 58968000, 59875200, 64864800, 66528000, 69854400, 70761600, 76204800, 77837760, 79833600
OFFSET
1,2
COMMENTS
Cameron asked whether there is an integer k with exactly 3 distinct prime factors such that A000010(k) < A008480(k). David Bevan found that the smallest example is 2^51 * 3^34 * 5^20 = 3.581...*10^45. - Amiram Eldar, Aug 06 2023
LINKS
Peter Cameron's Blog, An exercise in number theory, Posted on 17/02/2023.
MATHEMATICA
g[p_, e_] := (p - 1)*p^(e - 1); q[n_] := Module[{f = FactorInteger[n]}, Times @@ g @@@ f <= Multinomial @@ f[[;; , 2]]]; Select[Range[10^7], q] (* Amiram Eldar, Aug 06 2023 *)
PROG
(PARI) m(n) = my(f=factor(n)[, 2]); vecsum(f)!/prod(k=1, #f, f[k]!); \\ A008480
isok(n) = eulerphi(n) <= m(n);
CROSSREFS
Sequence in context: A152210 A206034 A299376 * A167446 A100378 A020819
KEYWORD
nonn
AUTHOR
Michel Marcus, Aug 05 2023
STATUS
approved