login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053157 Number of 3-element intersecting families (with not necessary distinct sets) whose union is an n-element set. 2
1, 5, 32, 235, 1816, 14055, 107052, 800315, 5886416, 42739855, 307295572, 2193374595, 15571898616, 110121224855, 776543100092, 5464689616075, 38398915520416, 269529406433055, 1890416947176612, 13251578251332755 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (22,-190,820,-1849,2038,-840).

FORMULA

a(n) = (7^n -3*5^n +3*4^n +2*3^n -3*2^n +2)/6.

G.f.: -x*(280*x^5-475*x^4+339*x^3-112*x^2+17*x-1)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(7*x-1)). - Colin Barker, Jul 29 2012

MATHEMATICA

Table[(7^n -3*5^n +3*4^n +2*3^n -3*2^n +2)/6, {n, 1, 50}] (* G. C. Greubel, Oct 07 2017 *)

PROG

(PARI) for(n=1, 50, print1((7^n -3*5^n +3*4^n +2*3^n -3*2^n +2)/6, ", ")) \\ G. C. Greubel, Oct 07 2017

(MAGMA) [(7^n -3*5^n +3*4^n +2*3^n -3*2^n +2)/6: n in [1..50]]; // G. C. Greubel, Oct 07 2017

CROSSREFS

Cf. A051180.

Sequence in context: A153396 A146965 A243693 * A102231 A127089 A241769

Adjacent sequences:  A053154 A053155 A053156 * A053158 A053159 A053160

KEYWORD

easy,nonn

AUTHOR

Vladeta Jovovic, Goran Kilibarda, Feb 28 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 23:51 EDT 2019. Contains 323597 sequences. (Running on oeis4.)