login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146965
a(n) = 10*a(n-1) - 18*a(n-2) with a(0)=1, a(1)=5.
2
1, 5, 32, 230, 1724, 13100, 99968, 763880, 5839376, 44643920, 341330432, 2609713760, 19953189824, 152557050560, 1166413088768, 8918103977600, 68185604178176, 521330170184960, 3985960826642432, 30475665203095040
OFFSET
0,2
COMMENTS
The Mathematica program implements the formula provided by Deleham and Brockhaus. - Harvey P. Dale, Feb 17 2011
FORMULA
a(n) = ((5 + sqrt(7))^n + (5 - sqrt(7))^n)/2.
G.f.: (1-5*x)/(1-10*x+18*x^2). - Philippe Deléham and Klaus Brockhaus, Nov 05 2008
a(n) = (Sum_{k=0..n} A098158(n,k)*5^(2*k)*7^(n-k))/5^n. - Philippe Deléham, Nov 06 2008
E.g.f.: exp(5*x)*cosh(sqrt(7)*x). - G. C. Greubel, Jan 08 2020
MAPLE
seq(coeff(series((1-5*x)/(1-10*x+18*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 08 2020
MATHEMATICA
Transpose[NestList[{#[[2]], 10#[[2]]-18#[[1]]}&, {1, 5}, 20]][[1]] (* Harvey P. Dale, Feb 17 2011 *)
LinearRecurrence[{10, -18}, {1, 5}, 30] (* Harvey P. Dale, Aug 27 2013 *)
PROG
(Magma) Z<x>:= PolynomialRing(Integers()); N<r7>:=NumberField(x^2-7); S:=[ ((5+r7)^n+(5-r7)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 05 2008
(PARI) my(x='x+O('x^30)); Vec((1-5*x)/(1-10*x+18*x^2)) \\ G. C. Greubel, Jan 08 2020
(Sage)
def A146965_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-5*x)/(1-10*x+18*x^2) ).list()
A146965_list(30) # G. C. Greubel, Jan 08 2020
(GAP) a:=[1, 5];; for n in [3..30] do a[n]:=10*a[n-1]-18*a[n-2]; od; a; # G. C. Greubel, Jan 08 2020
CROSSREFS
Sequence in context: A208632 A065071 A153396 * A243693 A364747 A053157
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Nov 03 2008
EXTENSIONS
Extended beyond a(7) by Klaus Brockhaus, Nov 05 2008
Name from Philippe Deléham and Klaus Brockhaus, Nov 05 2008
STATUS
approved