login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146967
Triangle read by rows: row n is the expansion of p(x,n)=If[n == 0, 1, (x + 1)^n + 2^(n - 3)*Sum[(2^(m - 1) +n*m - n + 1)*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}].
0
1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 34, 34, 34, 1, 1, 109, 102, 102, 109, 1, 1, 350, 303, 292, 303, 350, 1, 1, 1127, 901, 819, 819, 901, 1127, 1, 1, 3688, 2716, 2296, 2182, 2296, 2716, 3688, 1, 1, 12425, 8420, 6548, 5822, 5822, 6548, 8420, 12425, 1, 1, 43402
OFFSET
0,5
FORMULA
T(n,0) = T(n,n) = 1. For 0 < m < n, T(n,m) = binomial(n,m) + 2^(n-3)*(2^(m-1)+2^(n-m-1)+n^2-2*n+2). - Jason Yuen, Oct 03 2024
EXAMPLE
Triangle begins:
{1}
{1, 1}
{1, 4, 1}
{1, 11, 11, 1}
{1, 34, 34, 34, 1}
{1, 109, 102, 102, 109, 1}
{1, 350, 303, 292, 303, 350, 1}
{1, 1127, 901, 819, 819, 901, 1127, 1}
{1, 3688, 2716, 2296, 2182, 2296, 2716, 3688, 1}
{1, 12425, 8420, 6548, 5822, 5822, 6548, 8420, 12425, 1}
{1, 43402, 27181, 19320, 15826, 14844, 15826, 19320, 27181, 43402, 1}
MATHEMATICA
p[x_, n_] = If[n == 0, 1, (x + 1)^n + 2^(n - 3)*Sum[(2^(m - 1) + n*m - n + 1)*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]];
Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
Flatten[%]
PROG
(PARI) T(n, m) = if(m==0 || m==n, 1, binomial(n, m) + 2^(n-3)*(2^(m-1)+2^(n-m-1)+n^2-2*n+2)) \\ Jason Yuen, Oct 03 2024
CROSSREFS
Sequence in context: A008292 A174036 A157221 * A173152 A156049 A192015
KEYWORD
nonn,tabl,easy,less
AUTHOR
Roger L. Bagula, Nov 03 2008
STATUS
approved