login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: row n is the expansion of p(x,n)=If[n == 0, 1, (x + 1)^n + 2^(n - 3)*Sum[(2^(m - 1) +n*m - n + 1)*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}].
0

%I #8 Oct 04 2024 08:53:29

%S 1,1,1,1,4,1,1,11,11,1,1,34,34,34,1,1,109,102,102,109,1,1,350,303,292,

%T 303,350,1,1,1127,901,819,819,901,1127,1,1,3688,2716,2296,2182,2296,

%U 2716,3688,1,1,12425,8420,6548,5822,5822,6548,8420,12425,1,1,43402

%N Triangle read by rows: row n is the expansion of p(x,n)=If[n == 0, 1, (x + 1)^n + 2^(n - 3)*Sum[(2^(m - 1) +n*m - n + 1)*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}].

%F T(n,0) = T(n,n) = 1. For 0 < m < n, T(n,m) = binomial(n,m) + 2^(n-3)*(2^(m-1)+2^(n-m-1)+n^2-2*n+2). - _Jason Yuen_, Oct 03 2024

%e Triangle begins:

%e {1}

%e {1, 1}

%e {1, 4, 1}

%e {1, 11, 11, 1}

%e {1, 34, 34, 34, 1}

%e {1, 109, 102, 102, 109, 1}

%e {1, 350, 303, 292, 303, 350, 1}

%e {1, 1127, 901, 819, 819, 901, 1127, 1}

%e {1, 3688, 2716, 2296, 2182, 2296, 2716, 3688, 1}

%e {1, 12425, 8420, 6548, 5822, 5822, 6548, 8420, 12425, 1}

%e {1, 43402, 27181, 19320, 15826, 14844, 15826, 19320, 27181, 43402, 1}

%t p[x_, n_] = If[n == 0, 1, (x + 1)^n + 2^(n - 3)*Sum[(2^(m - 1) + n*m - n + 1)*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]];

%t Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];

%t Flatten[%]

%o (PARI) T(n,m) = if(m==0 || m==n, 1, binomial(n,m) + 2^(n-3)*(2^(m-1)+2^(n-m-1)+n^2-2*n+2)) \\ _Jason Yuen_, Oct 03 2024

%K nonn,tabl,easy,less

%O 0,5

%A _Roger L. Bagula_, Nov 03 2008