login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173152
Triangle T(n,m) read by rows: T(n,0)=T(n,n)=1, else T(n,m)= binomial(n,m) + 2^(2*n-3) *binomial(n-2,m-1).
0
1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 36, 70, 36, 1, 1, 133, 394, 394, 133, 1, 1, 518, 2063, 3092, 2063, 518, 1, 1, 2055, 10261, 20515, 20515, 10261, 2055, 1, 1, 8200, 49180, 122936, 163910, 122936, 49180, 8200, 1, 1, 32777, 229412, 688212, 1147006, 1147006
OFFSET
0,5
COMMENTS
Row sums are 1, 2, 6, 24, 144, 1056, 8256, 65664, 524544, 4194816, 3355545,...
EXAMPLE
1;
1, 1;
1, 4, 1;
1, 11, 11, 1;
1, 36, 70, 36, 1;
1, 133, 394, 394, 133, 1;
1, 518, 2063, 3092, 2063, 518, 1;
1, 2055, 10261, 20515, 20515, 10261, 2055, 1;
1, 8200, 49180, 122936, 163910, 122936, 49180, 8200, 1;
1, 32777, 229412, 688212, 1147006, 1147006, 688212, 229412, 32777, 1;
1, 131082, 1048621, 3670136, 7340242, 9175292, 7340242, 3670136, 1048621, 131082, 1;
MATHEMATICA
t[n_, m_, q_] := If[m == 0 || m == n, 1, Binomial[n, m] + q^(2*n - 3)*Binomial[n - 2, m - 1]];
Table[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}], {q, 1, 10}];
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 1, 10}]
CROSSREFS
Sequence in context: A174036 A157221 A146967 * A156049 A192015 A205946
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 11 2010
STATUS
approved