login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173155
a(n) = binomial(n + 5, 5) * 8^n.
5
1, 48, 1344, 28672, 516096, 8257536, 121110528, 1660944384, 21592276992, 268703891456, 3224446697472, 37520834297856, 425236122042368, 4710307813392384, 51140484831117312, 545498504865251328, 5727734301085138944, 59298896293587320832, 606166495445559279616
OFFSET
0,2
COMMENTS
With a different offset, number of n-permutations (n>=5) of 9 objects: p, r, s, t, u, v, z, x, y with repetition allowed, containing exactly five (5) u's.
LINKS
Index entries for linear recurrences with constant coefficients, signature (48,-960,10240,-61440,196608,-262144).
FORMULA
a(n) = C(n + 5, 5)*8^n, n>=0.
G.f.: 1/(1-8*x)^6. - Vincenzo Librandi, Oct 16 2011
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 96040*log(8/7) - 38470/3.
Sum_{n>=0} (-1)^n/a(n) = 262440*log(9/8) - 30910. (End)
MATHEMATICA
Table[Binomial[n + 5, 5]*8^n, {n, 0, 20}]
PROG
(Magma) [8^n* Binomial(n+5, 5): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Zerinvary Lajos, Feb 11 2010
STATUS
approved