login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053107
Expansion of 1/(1-8*x)^8.
8
1, 64, 2304, 61440, 1351680, 25952256, 449839104, 7197425664, 107961384960, 1535450808320, 20882130993152, 273366078455808, 3462636993773568, 42617070692597760, 511404848311173120, 6000483553517764608, 69005560865454292992, 779356922715719073792
OFFSET
0,2
COMMENTS
With a different offset, number of n-permutations (n>=7) of 9 objects: p, r, s, t, u, v, z, x, y with repetition allowed, containing exactly 7 u's. - Zerinvary Lajos, Feb 11 2010
LINKS
Index entries for linear recurrences with constant coefficients, signature (64, -1792, 28672, -286720, 1835008, -7340032, 16777216, -16777216).
FORMULA
a(n) = 8^n*binomial(n+7, 7).
G.f.: 1/(1-8*x)^8.
MATHEMATICA
Table[Binomial[n + 7, 7]*8^n, {n, 0, 20}] (* Zerinvary Lajos, Feb 11 2010 *)
CoefficientList[Series[1/(1-8x)^8, {x, 0, 20}], x] (* or *) LinearRecurrence[ {64, -1792, 28672, -286720, 1835008, -7340032, 16777216, -16777216}, {1, 64, 2304, 61440, 1351680, 25952256, 449839104, 7197425664}, 20] (* Harvey P. Dale, Jul 19 2018 *)
PROG
(Sage) [lucas_number2(n, 8, 0)*binomial(n, 7)/8^7 for n in range(7, 22)] # Zerinvary Lajos, Mar 13 2009
(Magma) [8^n* Binomial(n+7, 7): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
(PARI) vector(30, n, n--; 8^n*binomial(n+7, 7)) \\ G. C. Greubel, Aug 16 2018
CROSSREFS
KEYWORD
easy,nonn
EXTENSIONS
More terms from Harvey P. Dale, Jul 19 2018
STATUS
approved