login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053110
Expansion of (-1 + 1/(1-7*x)^7)/(49*x); related to A036226.
4
1, 28, 588, 10290, 158466, 2218524, 28840812, 353299947, 4121832715, 46164526408, 499416240232, 5243870522436, 53648829191076, 536488291910760, 5257585260725448, 50604258134482437, 479252091744216021
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (49,-1029,12005,-84035,352947,-823543,823543).
FORMULA
a(n) = 7^(n-1)*binomial(n+7, 6);
G.f.: (-1 + (1-7*x)^(-7))/(x*7^2).
MATHEMATICA
CoefficientList[Series[(-1+1/(1-7x)^7)/(49x), {x, 0, 30}], x] (* or *) LinearRecurrence[{49, -1029, 12005, -84035, 352947, -823543, 823543}, {1, 28, 588, 10290, 158466, 2218524, 28840812}, 30] (* Harvey P. Dale, Jun 03 2015 *)
Table[7^(n-1)*Binomial[n+7, 6], {n, 0, 30}] (* G. C. Greubel, Aug 16 2018 *)
PROG
(Sage)[lucas_number2(n, 7, 0)*binomial(n, 6)/7^8 for n in range(7, 24)] # Zerinvary Lajos, Mar 13 2009
(PARI) vector(30, n, n--; 7^(n-1)*binomial(n+7, 6)) \\ G. C. Greubel, Aug 16 2018
(Magma) [7^(n-1)*Binomial(n+7, 6): n in [0..30]]; // G. C. Greubel, Aug 16 2018
CROSSREFS
KEYWORD
easy,nonn
STATUS
approved