login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053113
Expansion of (-1 + 1/(1-10*x)^10)/(100*x); related to A053109.
4
1, 55, 2200, 71500, 2002000, 50050000, 1144000000, 24310000000, 486200000000, 9237800000000, 167960000000000, 2939300000000000, 49742000000000000, 817190000000000000, 13075040000000000000, 204297500000000000000
OFFSET
0,2
COMMENTS
This is the tenth member of the k-family of sequences a(k,n) := k^(n-1)*binomial(n+k,k-1) starting with A000012 (powers of 1), A001792, A036068, A036070, A036083, A036224, A053110-113 for k=1..10.
LINKS
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Index entries for linear recurrences with constant coefficients, signature (100, -4500, 120000, -2100000, 25200000, -210000000, 1200000000, -4500000000, 10000000000, -10000000000).
FORMULA
a(n) = 10^(n-1)*binomial(n+10, 9).
G.f.: (-1 + (1-10*x)^(-10))/(x*10^2).
MATHEMATICA
Table[10^(n - 1)*Binomial[n + 10, 9], {n, 0, 30}] (* G. C. Greubel, Aug 16 2018 *)
PROG
(PARI) vector(30, n, n--; 10^(n-1)*binomial(n+10, 9)) \\ G. C. Greubel, Aug 16 2018
(Magma) [10^(n-1)*Binomial(n+10, 9): n in [0..30]]; // G. C. Greubel, Aug 16 2018
CROSSREFS
Sequence in context: A217758 A346325 A240687 * A012048 A215860 A020536
KEYWORD
easy,nonn
STATUS
approved