login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053112
Expansion of (-1 + 1/(1-9*x)^9)/(81*x); related to A053108.
5
1, 45, 1485, 40095, 938223, 19702683, 379980315, 6839645670, 116273976390, 1883638417518, 29282015399598, 439230230993970, 6385731819835410, 90312492880529370, 1246312401751305306, 16825217423642621631
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (81, -2916, 61236, -826686, 7440174, -44641044, 172186884, -387420489, 387420489).
FORMULA
G.f.: (-1 + 1/(1-9*x)^9)/(81*x).
a(n) = 9^(n-1)*binomial(n+9, 8).
a(0)=1, a(1)=45, a(2)=1485, a(3)=40095, a(4)=938223, a(5)=19702683, a(6)=379980315, a(7)=6839645670, a(8)=116273976390, a(n)=81*a(n-1)- 2916*a(n-2)+ 61236*a(n-3)- 826686*a(n-4)+ 7440174*a(n-5)- 44641044*a(n-6)+ 172186884*a(n-7)- 387420489*a(n-8)+ 387420489*a(n-9). - Harvey P. Dale, Apr 27 2013
MATHEMATICA
CoefficientList[Series[(-1+1/(1-9*x)^9)/(81*x), {x, 0, 30}], x] (* or *) LinearRecurrence[{81, -2916, 61236, -826686, 7440174, -44641044, 172186884, -387420489, 387420489}, {1, 45, 1485, 40095, 938223, 19702683, 379980315, 6839645670, 116273976390}, 20] (* Harvey P. Dale, Apr 27 2013 *)
Table[9^(n - 1)*Binomial[n + 9, 8], {n, 0, 30}] (* G. C. Greubel, Aug 16 2018 *)
PROG
(PARI) vector(30, n, n--; 9^(n-1)*binomial(n+9, 8)) \\ G. C. Greubel, Aug 16 2018
(Magma) [9^(n-1)*Binomial(n+9, 8): n in [0..30]]; // G. C. Greubel, Aug 16 2018
CROSSREFS
Without signs: A078812. With zeros: A049310. Cf. A008310 (T(n, x)), A008312 (U(n, x)).
Sequence in context: A137716 A035521 A107399 * A240686 A014940 A273436
KEYWORD
easy,nonn
STATUS
approved