login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240686
Number of forests with n labeled nodes and 9 trees.
3
1, 45, 1485, 45540, 1402830, 44837793, 1508782275, 53789959080, 2036262886515, 81857181636945, 3490649483399793, 157637380245930000, 7524305274666328785, 378816067488484478160, 20074256751067210380645, 1117410784286881766178816, 65207052558569641113281250
OFFSET
9,2
LINKS
FORMULA
a(n) = n^(n-18) * (n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(n^8 + 76*n^7 + 3122*n^6 + 88760*n^5 + 1873921*n^4 + 29555596*n^3 + 334746252*n^2 + 2455095600*n + 8821612800)/10321920. - Vaclav Kotesovec, Sep 06 2014
MAPLE
T:= proc(n, m) option remember; `if`(n<0, 0, `if`(n=m, 1,
`if`(m<1 or m>n, 0, add(binomial(n-1, j-1)*j^(j-2)*
T(n-j, m-1), j=1..n-m+1))))
end:
a:= n-> T(n, 9):
seq(a(n), n=9..30);
MATHEMATICA
Table[n^(n-18) * (n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(n^8 + 76*n^7 + 3122*n^6 + 88760*n^5 + 1873921*n^4 + 29555596*n^3 + 334746252*n^2 + 2455095600*n + 8821612800)/10321920, {n, 9, 30}] (* Vaclav Kotesovec, Sep 06 2014 *)
CROSSREFS
Column m=9 of A105599. A diagonal of A138464.
Sequence in context: A035521 A107399 A053112 * A014940 A273436 A049397
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 10 2014
STATUS
approved