login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049397
Expansion of (1-25*x)^(-9/5).
2
1, 45, 1575, 49875, 1496250, 43391250, 1229418750, 34248093750, 941822578125, 25638503515625, 692239594921875, 18564607318359375, 495056195156250000, 13138029794531250000, 347219358855468750000
OFFSET
0,2
LINKS
FORMULA
G.f.: (1-25*x)^(-9/5).
a(n) = 5^n/n! * product[ k=0..n-1 ] (5*k+9).
a(n) ~ 5/4*Gamma(4/5)^-1*n^(4/5)*5^(2*n)*{1 + 18/25*n^-1 - ...}. - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n) = (25^n*(9/5)_n)/n!, where the rising factorial (c)_n = Gamma(c+n)/Gamma(c). - Todd Silvestri, Dec 17 2014. See the a(n) formula above.
EXAMPLE
(1-25*x)^(-9/5) = 1 + 9/5*(5^2*x) + 63/25*(5^2*x)^2 + 399/125*(5^2*x)^3 + ... = 1 + 5*9*x + 63*5^2* x^2 + 399*5^3*x^3 + ... = 1 + 45*x + 1575*x^2 + 49875*x^3 + ...
MATHEMATICA
a[n_Integer/; n>=0]:=25^n Pochhammer[9/5, n]/n! (* Todd Silvestri, Dec 17 2014 *)
CROSSREFS
Cf. A049382.
Sequence in context: A240686 A014940 A273436 * A215859 A143170 A328351
KEYWORD
nonn,easy
AUTHOR
Joe Keane (jgk(AT)jgk.org)
EXTENSIONS
Edited: name and example corrected according to G.f. - Wolfdieter Lang, Jan 05 2015
STATUS
approved