login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049399
A generalized difference set on the set of all integers (lambda = 2).
2
1, 2, 6, 7, 16, 18, 38, 40, 82, 85, 172, 175, 352, 356, 714, 720, 1442, 1449, 2900, 2907, 5816, 5824, 11650, 11658, 23318, 23327, 46656, 46666, 93334, 93345, 186692, 186704, 373410, 373423, 746848, 746861, 1493724, 1493738, 2987478, 2987493, 5974988, 5975004
OFFSET
0,2
COMMENTS
In the set of all positive differences of the sequence each integer appears exactly twice, i.e., lambda = 2.
One could try to greedily build such a difference set as follows: b(1) = 1, b(n+1) = b(n)+j with j the smallest difference yet to appear twice. This would begin with {1, 2, 3, 5, 8, 12, 17, 23, 31, 39, 49} and fail; the smallest difference yet to appear twice is then 12 = 17-5, but 49+12 = 61 and 61-39 = 22 = 23-1 = 39-17. - Danny Rorabaugh, Sep 27 2015
LINKS
T. Baginova, R. Jajcay, Notes on subtractive properties of natural numbers, Bulletin of the ICA, Vol. 25(1999), pp. 29-40
O. Grosek, R. Jajcay, Generalized Difference Sets on an Infinite Cyclic Semigroup, JCMCC, Vol. 13 (1993), pp. 167-174.
FORMULA
Let N_1={1, 2}. Given N_i, let N_{i+1} = N_i union {2k+2, 2k+2+j} where k = max element of N_i and j = smallest number of form x-y for at most one pair x, y in N_i, x>y. Union of all N_i gives sequence. - Danny Rorabaugh (mirroring formula in A024431), Sep 27 2015
CROSSREFS
Cf. A024431.
Sequence in context: A030607 A330476 A177353 * A060133 A107784 A210619
KEYWORD
nonn,easy
AUTHOR
Otokar Grosek (grosek(AT)elf.stuba.sk)
EXTENSIONS
a(12)-a(15) corrected and more terms added by Danny Rorabaugh, Sep 27 2015
STATUS
approved