login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024431
A generalized difference set on the set of all integers (lambda = 1).
7
1, 2, 6, 8, 18, 21, 44, 52, 106, 115, 232, 243, 488, 502, 1006, 1024, 2050, 2071, 4144, 4166, 8334, 8358, 16718, 16743, 33488, 33515, 67032, 67060, 134122, 134151, 268304, 268334, 536670, 536702, 1073406, 1073439, 2146880, 2146915, 4293832
OFFSET
0,2
COMMENTS
In the set of all positive differences of the sequence each integer appears exactly once, i.e., lambda = 1.
REFERENCES
T. Baginova, R. Jajcay, Notes on subtractive properties of natural numbers, Bulletin of the ICA, Vol. 25(1999), pp. 29-40
O. Grosek, R. Jajcay, Generalized Difference Sets on an Infinite Cyclic Semigroup, JCMCC, Vol. 13 (1993), pp. 167-174.
LINKS
FORMULA
Let N_1={1, 2}. Given N_i, let N_{i+1} = N_i union {2k+2, 2k+2+j} where k = max element of N_i and j = smallest number not of form x-y for x, y in N_i, x>y. Union of all N_i gives sequence.
a(A115406(n)) - a(A115407(n)) = n; a(m) - a(n) = A115409(m*(m-1)/2+n+1), 1 <= n < m. - Reinhard Zumkeller, Jan 22 2006
For n > 0: a(n) = A115409(n,1) + 1. - Reinhard Zumkeller, Sep 16 2014
MAPLE
M:= 100: # to get all differences up to M
Agenda:= Array(1..M, 1):
a[1]:= 1: a[2]:= 2: Agenda[1]:= 0:
for n from 2 by 2 do
dm:= ArrayTools:-SearchArray(Agenda, 1);
if ArrayTools:-Size(dm)[1]=0 then break fi;
dm:= dm[1];
Agenda[dm]:= 0:
a[n+1]:= 2*a[n]+2:
a[n+2]:= a[n+1] + dm;
for j from n by -1 to 1 while a[n+1] - a[j] <= M do
Agenda[a[n+1]-a[j]]:= 0;
if a[n+2]-a[j] <= M then Agenda[a[n+2]-a[j]]:= 0 fi
od:
od:
seq(a[i], i=1..n); # Robert Israel, Oct 08 2015
MATHEMATICA
differenceQ[seq_, x_] := (r = False; Do[ If[ x == seq[[k]] - seq[[j]], r = True; Break[]], { j, 1, Length[seq] }, {k, 1, Length[seq] } ]; r); seq[1] = {1, 2}; seq[i_] := seq[i] = (k = Max[ seq[i-1] ]; j = First[ Select[ Range[k], !differenceQ[ seq[i-1], #] & , 1]]; Union[ seq[i-1], {2k+2, 2k+2+j} ] ); A024431 = seq[20] (* Jean-François Alcover, Jan 04 2012 *)
PROG
(Haskell)
import Data.List ((\\))
a024431 n = a024431_list !! n
a024431_list = 1 : 2 : f [2, 1] [2 ..] where
f ks@(k:_) (j:js) =
x : y : f (y : x : ks) ((js \\ map (y -) ks) \\ map (x -) ks)
where y = x + j; x = 2 * k + 2
-- Reinhard Zumkeller, Sep 16 2014
CROSSREFS
Cf. A247414 (first differences).
Sequence in context: A005823 A259026 A178758 * A152598 A154610 A053658
KEYWORD
nonn,nice,easy
AUTHOR
Otokar Grosek (grosek(AT)elf.stuba.sk)
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), May 04 2000
STATUS
approved