login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240688
Expansion of -(x*sqrt(-4*x^2-4*x+1)-2*x^2-3*x) / ((x+1)*sqrt(-4*x^2-4*x+1)+ 4*x^3+8*x^2+3*x-1).
4
1, 1, 5, 19, 81, 351, 1553, 6959, 31489, 143551, 658305, 3033471, 14034177, 65147135, 303285505, 1415422719, 6620053505, 31021657087, 145613977601, 684537354239, 3222408929281, 15187861143551, 71663163121665
OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
FORMULA
a(n) = Sum_{k=0..n} Sum_{i=0..(n-k)} binomial(k,n-k-i)*binomial(k+i-1,i)*binomial(n,k).
A(x) = x*D'(x)/D(x) where D(x)=(1-sqrt(1-4*x-4*x^2))/(2*(1+x)) is g.f. of A052709.
a(n) ~ 2^(n-1/4) * (1+sqrt(2))^(n-1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Apr 12 2014
a(n) = Sum_{i=0..n/2} binomial(n,i)*binomial(2*n-2*i-1,n-2*i). - Vladimir Kruchinin, Mar 10 2015
Conjecture: n*(n-1)*a(n) -(3*n-2)*(n-1)*a(n-1) +2*(-4*n^2+7*n-1)*a(n-2) -4*n*(n-2)*a(n-3)=0. - R. J. Mathar, Jun 14 2016
From Peter Bala, Feb 13 2022: (Start)
The o.g.f. A(x) satisfies the differential equation (8*x^4 + 20*x^3 + 14*x^2 + x - 1)*A(x)' + (8*x^3 + 12*x^2 + 6*x + 3)*A(x) - 2 = 0 with A(0) = 1.
n*a(n) = (n+2)*a(n-1) + (14*n-22)*a(n-2) + (20*n-48)*a(n-3) + (8*n-24)*a(n-4).
Mathar's conjectural third-order recurrence above can be verified using Maple's gfun:-rectodiffeq command.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. (End)
MATHEMATICA
CoefficientList[Series[-(x Sqrt[-4 x^2 - 4 x + 1] - 2 x^2 - 3 x) / ((x + 1) Sqrt[-4 x^2 - 4 x + 1] + 4 x^3 + 8 x^2 + 3 x - 1), {x, 0, 25}], x] (* Vaclav Kotesovec, Apr 12 2014 *)
PROG
(Maxima)
a(n):=sum((sum(binomial(k, n-k-i)*binomial(k+i-1, i), i, 0, n-k))*binomial(n, k), k, 0, n);
(PARI) x='x+O('x^50); Vec(-(x*sqrt(-4*x^2-4*x+1)-2*x^2-3*x) / ((x+1)*sqrt(-4*x^2-4*x+1)+ 4*x^3+8*x^2+3*x-1)) \\ G. C. Greubel, Apr 05 2017
CROSSREFS
Cf. A052709.
Sequence in context: A149782 A149783 A149784 * A149785 A149786 A149787
KEYWORD
nonn,easy
AUTHOR
Vladimir Kruchinin, Apr 10 2014
STATUS
approved