login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of -(x*sqrt(-4*x^2-4*x+1)-2*x^2-3*x) / ((x+1)*sqrt(-4*x^2-4*x+1)+ 4*x^3+8*x^2+3*x-1).
4

%I #38 Feb 14 2022 11:23:04

%S 1,1,5,19,81,351,1553,6959,31489,143551,658305,3033471,14034177,

%T 65147135,303285505,1415422719,6620053505,31021657087,145613977601,

%U 684537354239,3222408929281,15187861143551,71663163121665

%N Expansion of -(x*sqrt(-4*x^2-4*x+1)-2*x^2-3*x) / ((x+1)*sqrt(-4*x^2-4*x+1)+ 4*x^3+8*x^2+3*x-1).

%H G. C. Greubel, <a href="/A240688/b240688.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..200 from Vincenzo Librandi)

%F a(n) = Sum_{k=0..n} Sum_{i=0..(n-k)} binomial(k,n-k-i)*binomial(k+i-1,i)*binomial(n,k).

%F A(x) = x*D'(x)/D(x) where D(x)=(1-sqrt(1-4*x-4*x^2))/(2*(1+x)) is g.f. of A052709.

%F a(n) ~ 2^(n-1/4) * (1+sqrt(2))^(n-1/2) / sqrt(Pi*n). - _Vaclav Kotesovec_, Apr 12 2014

%F a(n) = Sum_{i=0..n/2} binomial(n,i)*binomial(2*n-2*i-1,n-2*i). - _Vladimir Kruchinin_, Mar 10 2015

%F Conjecture: n*(n-1)*a(n) -(3*n-2)*(n-1)*a(n-1) +2*(-4*n^2+7*n-1)*a(n-2) -4*n*(n-2)*a(n-3)=0. - _R. J. Mathar_, Jun 14 2016

%F From _Peter Bala_, Feb 13 2022: (Start)

%F The o.g.f. A(x) satisfies the differential equation (8*x^4 + 20*x^3 + 14*x^2 + x - 1)*A(x)' + (8*x^3 + 12*x^2 + 6*x + 3)*A(x) - 2 = 0 with A(0) = 1.

%F n*a(n) = (n+2)*a(n-1) + (14*n-22)*a(n-2) + (20*n-48)*a(n-3) + (8*n-24)*a(n-4).

%F Mathar's conjectural third-order recurrence above can be verified using Maple's gfun:-rectodiffeq command.

%F The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. (End)

%t CoefficientList[Series[-(x Sqrt[-4 x^2 - 4 x + 1] - 2 x^2 - 3 x) / ((x + 1) Sqrt[-4 x^2 - 4 x + 1] + 4 x^3 + 8 x^2 + 3 x - 1), {x, 0, 25}], x] (* _Vaclav Kotesovec_, Apr 12 2014 *)

%o (Maxima)

%o a(n):=sum((sum(binomial(k,n-k-i)*binomial(k+i-1,i),i,0,n-k))*binomial(n,k),k,0,n);

%o (PARI) x='x+O('x^50); Vec(-(x*sqrt(-4*x^2-4*x+1)-2*x^2-3*x) / ((x+1)*sqrt(-4*x^2-4*x+1)+ 4*x^3+8*x^2+3*x-1)) \\ _G. C. Greubel_, Apr 05 2017

%Y Cf. A052709.

%K nonn,easy

%O 0,3

%A _Vladimir Kruchinin_, Apr 10 2014