login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240690
Number of partitions p of n such that p contains fewer 1s than its conjugate.
4
0, 1, 1, 2, 3, 4, 7, 8, 14, 16, 26, 30, 47, 54, 81, 95, 136, 161, 224, 266, 361, 431, 571, 684, 891, 1067, 1369, 1641, 2077, 2488, 3116, 3726, 4623, 5520, 6790, 8093, 9884, 11753, 14262, 16923, 20415, 24168, 29006, 34255, 40920, 48214, 57344, 67410, 79863
OFFSET
1,4
COMMENTS
a(n+1) = number of partitions p of n such that (# 1s in p) <= (#1s in conjugate(p)).
LINKS
FORMULA
2*a(n) + A240691(n) = A000041(n) for n >= 1.
a(n) + a(n+1) = A000041(n). - Omar E. Pol, Mar 07 2015
G.f.: (-1 + Product_{k>0} (1 - x^k)^(-1)) * x / (1 + x). - Michael Somos, Mar 16 2015
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)). - Vaclav Kotesovec, Jun 02 2018
EXAMPLE
a(6) counts these 4 partitions: 6, 51, 42, 411, of which the respective conjugates are 111111, 21111, 2211, 3111.
G.f. = x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 7*x^7 + 8*x^8 + 14*x^9 + 16*x^10 + ...
MATHEMATICA
z = 53; f[n_] := f[n] = IntegerPartitions[n]; c[p_] := Table[Count[#, _?(# >= i &)], {i, First[#]}] &[p]; (* conjugate of partition p *)
Table[Count[f[n], p_ /; Count[p, 1] < Count[c[p], 1]], {n, 1, z}] (* A240690 *)
Table[Count[f[n], p_ /; Count[p, 1] <= Count[c[p], 1]], {n, 1, z}] (* A240690(n+1) *)
Table[Count[f[n], p_ /; Count[p, 1] == Count[c[p], 1]], {n, 1, z}] (* A240691 *)
a[ n_] := SeriesCoefficient[ (-1 + 1 / QPochhammer[ x]) x / (1 + x), {x, 0, n}]; (* Michael Somos, Mar 16 2015 *)
PROG
(PARI) q='q+O('q^60); concat([0], Vec((-1 + 1/eta(q))*q/(1+q))) \\ G. C. Greubel, Aug 07 2018
CROSSREFS
Sequence in context: A215914 A006049 A084541 * A339593 A113050 A278180
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 11 2014
STATUS
approved