Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Aug 08 2018 03:02:57
%S 0,1,1,2,3,4,7,8,14,16,26,30,47,54,81,95,136,161,224,266,361,431,571,
%T 684,891,1067,1369,1641,2077,2488,3116,3726,4623,5520,6790,8093,9884,
%U 11753,14262,16923,20415,24168,29006,34255,40920,48214,57344,67410,79863
%N Number of partitions p of n such that p contains fewer 1s than its conjugate.
%C a(n+1) = number of partitions p of n such that (# 1s in p) <= (#1s in conjugate(p)).
%H G. C. Greubel, <a href="/A240690/b240690.txt">Table of n, a(n) for n = 1..2500</a>
%F 2*a(n) + A240691(n) = A000041(n) for n >= 1.
%F a(n) + a(n+1) = A000041(n). - _Omar E. Pol_, Mar 07 2015
%F G.f.: (-1 + Product_{k>0} (1 - x^k)^(-1)) * x / (1 + x). - _Michael Somos_, Mar 16 2015
%F a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)). - _Vaclav Kotesovec_, Jun 02 2018
%e a(6) counts these 4 partitions: 6, 51, 42, 411, of which the respective conjugates are 111111, 21111, 2211, 3111.
%e G.f. = x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 7*x^7 + 8*x^8 + 14*x^9 + 16*x^10 + ...
%t z = 53; f[n_] := f[n] = IntegerPartitions[n]; c[p_] := Table[Count[#, _?(# >= i &)], {i, First[#]}] &[p]; (* conjugate of partition p *)
%t Table[Count[f[n], p_ /; Count[p, 1] < Count[c[p], 1]], {n, 1, z}] (* A240690 *)
%t Table[Count[f[n], p_ /; Count[p, 1] <= Count[c[p], 1]], {n, 1, z}] (* A240690(n+1) *)
%t Table[Count[f[n], p_ /; Count[p, 1] == Count[c[p], 1]], {n, 1, z}] (* A240691 *)
%t a[ n_] := SeriesCoefficient[ (-1 + 1 / QPochhammer[ x]) x / (1 + x), {x, 0, n}]; (* _Michael Somos_, Mar 16 2015 *)
%o (PARI) q='q+O('q^60); concat([0], Vec((-1 + 1/eta(q))*q/(1+q))) \\ _G. C. Greubel_, Aug 07 2018
%Y Cf. A240691, A000041.
%K nonn,easy
%O 1,4
%A _Clark Kimberling_, Apr 11 2014