login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036083
Expansion of (-1+1/(1-5*x)^5)/(25*x); related to A036071.
6
1, 15, 175, 1750, 15750, 131250, 1031250, 7734375, 55859375, 391015625, 2666015625, 17773437500, 116210937500, 747070312500, 4731445312500, 29571533203125, 182647705078125, 1116180419921875, 6755828857421875
OFFSET
0,2
LINKS
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Index entries for linear recurrences with constant coefficients, signature (25, -250, 1250, -3125, 3125).
FORMULA
a(n) = 5^(n-1)*binomial(n+5, 4);
g.f. (-1+(1-5*x)^(-5))/(x*5^2).
MATHEMATICA
LinearRecurrence[{25, -250, 1250, -3125, 3125}, {1, 15, 175, 1750, 15750}, 20] (* Harvey P. Dale, Aug 29 2024 *)
PROG
(Sage)[lucas_number2(n, 5, 0)*binomial(n, 4)/5^6 for n in range(5, 24)] # Zerinvary Lajos, Mar 13 2009
CROSSREFS
Cf. A036070, A036071. a(n)= A030527(n+1, 1) (first column of triangle).
Sequence in context: A082678 A331516 A107395 * A346320 A051588 A016164
KEYWORD
easy,nonn
STATUS
approved