login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331516
Expansion of 1/(1 - 10*x + 9*x^2)^(3/2).
3
1, 15, 174, 1850, 18855, 187425, 1832460, 17705700, 169569405, 1612842275, 15256106778, 143660483070, 1347716324227, 12603114069525, 117536416879320, 1093553079352200, 10153324144411065, 94098595671581175, 870667876141568070, 8044341506669534850
OFFSET
0,2
LINKS
FORMULA
a(n) = 1/2 * Sum_{k=1..n+1} 3^(n+1-k) * k * binomial(n+1,k) * binomial(n+1+k,k).
n * a(n) = 5 * (2*n+1) * a(n-1) - 9 * (n+1) * a(n-2) for n>1.
a(n) = ((n+2)/2) * Sum_{k=0..n} 4^k * binomial(n+1,k) * binomial(n+1,k+1).
a(n) ~ sqrt(n) * 3^(2*n + 3) / (2^(7/2) * sqrt(Pi)). - Vaclav Kotesovec, Jan 26 2020
MATHEMATICA
a[n_] := 1/2 * Sum[3^( n + 1 - k) * k * Binomial[n + 1, k] * Binomial[n + 1 + k, k], {k, 1, n+1}]; Array[a, 20, 0] (* Amiram Eldar, Jan 20 2020 *)
CoefficientList[Series[1/(1-10x+9x^2)^(3/2), {x, 0, 20}], x] (* Harvey P. Dale, Nov 04 2021 *)
PROG
(PARI) N=20; x='x+O('x^N); Vec(1/(1-10*x+9*x^2)^(3/2))
(PARI) {a(n) = sum(k=1, n+1, 3^(n+1-k)*k*binomial(n+1, k)*binomial(n+1+k, k))/2}
(Magma) R<x>:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( 1/(1 - 10*x + 9*x^2)^(3/2))); // Marius A. Burtea, Jan 20 2020
(Magma) [1/2*&+[3^(n-k+1)*k*Binomial(n+1, k)*Binomial(n+k+1, k):k in [1..n+1]]:n in [0..20]]; // Marius A. Burtea, Jan 20 2020
CROSSREFS
Column 5 of A331514.
Cf. A084771.
Sequence in context: A152586 A339547 A082678 * A107395 A036083 A346320
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 19 2020
STATUS
approved