login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331513
a(n) = Sum_{k=0..n} (-n)^(n-k) * (n+k+1) * binomial(n,k) * binomial(n+k,k).
3
1, 4, -6, 32, -170, -228, 43764, -1498880, 43826598, -1249865260, 35978752876, -1053020066976, 31153402105852, -914722450924436, 25562930671296360, -604802562457466880, 5868775340572918534, 684246820455046681380, -78372285809430441261828
OFFSET
0,2
LINKS
FORMULA
a(n) = [x^n] (1 + n*x)/(1 + 2*(n-2)*x + (n*x)^2)^(3/2).
a(n) = Sum_{k=0..n} (-n+1)^k * (k+1) * binomial(n+1,k+1)^2.
MATHEMATICA
a[n_] := Sum[If[n == n-k == 0, 1, (-n)^(n-k)] * (n+k+1) * Binomial[n, k] * Binomial[n + k, k], {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, May 05 2021 *)
PROG
(PARI) {a(n) = sum(k=0, n, (-n)^(n-k)*(n+k+1)*binomial(n, k)*binomial(n+k, k))}
(PARI) {a(n) = polcoef((1+n*x)/(1+2*(n-2)*x+(n*x)^2)^(3/2), n)}
(PARI) {a(n) = sum(k=0, n, (-n+1)^k*(k+1)*binomial(n+1, k+1)^2)}
CROSSREFS
Sequence in context: A087299 A229712 A377646 * A164127 A180139 A222490
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jan 19 2020
STATUS
approved