login
A377646
Expansion of e.g.f. (1 + x * (exp(x) - 1))^2.
2
1, 0, 4, 6, 32, 130, 432, 1274, 3488, 9090, 22880, 56122, 134928, 319202, 745136, 1719930, 3931712, 8912386, 20053440, 44825978, 99614000, 220200162, 484441232, 1061157946, 2315254752, 5033163650, 10905189152, 23555209914, 50734299728, 108984793570
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..floor(n/2)} k! * binomial(2,k) * Stirling2(n-k,k)/(n-k)!.
PROG
(PARI) a(n) = n!*sum(k=0, n\2, k!*binomial(2, k)*stirling(n-k, k, 2)/(n-k)!);
CROSSREFS
Cf. A375660.
Sequence in context: A239224 A087299 A229712 * A331513 A164127 A180139
KEYWORD
nonn,easy,new
AUTHOR
Seiichi Manyama, Nov 04 2024
STATUS
approved