login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239224
Numerator of 2n/v(n)^2, where v(1) = 0, v(2) = 1, and v(n) = v(n-1)/(n-2) + v(n-2) for n >= 3; limit of 2n/v(n)^2 is Pi.
2
1, 4, 6, 32, 40, 256, 896, 4096, 4608, 65536, 360448, 524288, 1703936, 4194304, 10485760, 134217728, 142606336, 4294967296, 40802189312, 34359738368, 180388626432, 274877906944, 3161095929856, 4398046511104, 13743895347200, 70368744177664, 949978046398464
OFFSET
1,2
COMMENTS
Pi = limit of A239224(n)/A239225(n), attributed to B. Cloitre in Finch.
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, page 19.
LINKS
EXAMPLE
Let w(n) = 2n/v(n)^2. The first 7 values of w are 4, 6, 32/9, 40/9, 256/75, 896/225, 4096/1225, with approximations 4., 6., 3.55556, 4.44444, 3.41333, 3.98222, 3.34367; w(1000) = 3.14316..., w(10000) = 3.14175..., w(20000) = 3.14167... .
MAPLE
v:= proc(n) v(n):= `if`(n<3, n-1, v(n-1)/(n-2)+v(n-2)) end:
a:= n-> numer(2*n/v(n)^2):
seq(a(n), n=2..30); # Alois P. Heinz, Mar 12 2014
MATHEMATICA
z = 40; v[1] = 0; v[2] = 1; v[n_] := v[n] = v[n - 1]/(n - 2) + v[n - 2]
u = Join[{1}, Table[2 n/v[n]^2, {n, 2, z}]];
t1 = Numerator[u] (* A239224 *)
t2 = Denominator[u] (* A239225 *)
CROSSREFS
Sequence in context: A068720 A068402 A078250 * A087299 A229712 A377646
KEYWORD
nonn,frac,easy
AUTHOR
Clark Kimberling, Mar 12 2014
STATUS
approved