login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331514
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/(1 - 2*k*x + ((k-2)*x)^2)^(3/2).
5
1, 1, 0, 1, 3, -6, 1, 6, 6, 0, 1, 9, 30, 10, 30, 1, 12, 66, 140, 15, 0, 1, 15, 114, 450, 630, 21, -140, 1, 18, 174, 1000, 2955, 2772, 28, 0, 1, 21, 246, 1850, 8430, 18963, 12012, 36, 630, 1, 24, 330, 3060, 18855, 69384, 119812, 51480, 45, 0
OFFSET
0,5
LINKS
FORMULA
T(n,k) = (1/2) * Sum_{j=1..n+1} (k-2)^(n+1-j) * j * binomial(n+1,j) * binomial(n+1+j,j).
n * T(n,k) = k * (2*n+1) * T(n-1,k) - (k-2)^2 * (n+1) * T(n-2,k) for n>1.
T(n,k) = ((n+2)/2) * Sum_{j=0..n} (k-1)^j * binomial(n+1,j) * binomial(n+1,j+1).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 3, 6, 9, 12, 15, ...
-6, 6, 30, 66, 114, 174, ...
0, 10, 140, 450, 1000, 1850, ...
30, 15, 630, 2955, 8430, 18855, ...
0, 21, 2772, 18963, 69384, 187425, ...
MATHEMATICA
T[n_, k_] = 1/2 * Sum[If[k == 2 && n == j - 1, 1, (k - 2)^(n + 1 - j)] * j * Binomial[n + 1, j] * Binomial[n + 1 + j, j], {j, 1, n + 1}]; Table[Table[T[n, k - n], {n, 0, k}], {k, 0, 9}] //Flatten (* Amiram Eldar, Jan 20 2020 *)
PROG
(PARI) T(n, k) = (1/2)*sum(j=1, n+1, (k-2)^(n+1-j)*j*binomial(n+1, j)*binomial(n+1+j, j));
matrix(7, 7, n, k, T(n-1, k-1)) \\ Michel Marcus, Jan 20 2020
CROSSREFS
Columns k=1..5 give A000217(n+1), A002457, A002695(n+1), A331515, A331516.
Sequence in context: A145389 A055263 A004157 * A091068 A065233 A345681
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Jan 19 2020
STATUS
approved