login
A145389
Digital roots of triangular numbers.
8
0, 1, 3, 6, 1, 6, 3, 1, 9, 9, 1, 3, 6, 1, 6, 3, 1, 9, 9, 1, 3, 6, 1, 6, 3, 1, 9, 9, 1, 3, 6, 1, 6, 3, 1, 9, 9, 1, 3, 6, 1, 6, 3, 1, 9, 9, 1, 3, 6, 1, 6, 3, 1, 9, 9, 1, 3, 6, 1, 6, 3, 1, 9, 9, 1, 3, 6, 1, 6, 3, 1, 9, 9, 1, 3, 6, 1, 6, 3, 1, 9, 9, 1, 3, 6, 1, 6
OFFSET
0,3
COMMENTS
Decimal expansion of 45387733/3333333330. - Enrique Pérez Herrero, Nov 14 2021
FORMULA
a(n) = A010888(A000217(n)).
Periodic sequence for n>0: a(n+9) = a(n);
a(A016777(n)) = 1; a(A007494(n)) <> 1;
a(A090570(n)) = A010888(A090570(n)).
a(n) = 1 + ((n^2 + n - 2)/2) mod 9. - Ant King, Apr 25 2009
G.f.: x(1 + 3x + 6x^2 + x^3 + 6x^4 + 3x^5 + x^6 + 9x^7 + 9x^8)/((1-x)(1 + x + x^2)(1 + x^3 + x^6)). - Ant King, Nov 16 2010
MATHEMATICA
digitalRoot[n_Integer?Positive] := FixedPoint[Plus@@IntegerDigits[#]&, n]; Table[If[n==0, 0, digitalRoot[n(n+1)/2]], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, May 02 2011 *)
PROG
(PARI) a(n)=if(n, n=n*(n+1)/2%9; if(n, n, 9), 0) \\ Charles R Greathouse IV, Dec 19 2016
(Python)
def A145389(n): return (9, 1, 3, 6, 1, 6, 3, 1, 9)[n%9] if n else 0 # Chai Wah Wu, Feb 09 2023
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Reinhard Zumkeller, Oct 10 2008
STATUS
approved