login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145386
a(1) = 1; a(n) = a(n-1)*(2*(n-1)+a(n-1)) for n > 1.
0
1, 3, 21, 567, 326025, 106295560875, 11298746263006377496125, 127661667115800580590177504581888913674961375
OFFSET
1,2
COMMENTS
Next term has 89 decimal digits and is too large to include. - Klaus Brockhaus, Oct 13 2008
FORMULA
a(n) = Product_{k = 1..n} b(k), where b(1) = 1 and b(n) = a(n-1) + 2*(n-1) for n > 1. The sequence b(n) begins [1, 3, 7, 27, 575, 326035, ...] and is given by the recurrence b(n) = b(n-1)^2 - 2*(n-2)*b(n-1) + 2*(n-1) with b(1) = 1. - Peter Bala, Mar 27 2018
EXAMPLE
a(2) = a(1)*(2*(2-1)+a(1)) = 1*(2*1+1) = 3. - Klaus Brockhaus, Oct 13 2008
MATHEMATICA
lst={}; s=1; Do[s*=(n+=s+n); AppendTo[lst, s], {n, 0, 7}]; lst
PROG
(ARIBAS) a:=1; for n:=1 to 9 do a:=a*(a+2*(n-1)); write(a:group(0), ", "); end; end; (* Klaus Brockhaus, Oct 13 2008 *)
(PARI) a=vector(15); a[1]=1; for(n=2, #a, a[n] = a[n-1]*(2*(n-1)+a[n-1])); a \\ Altug Alkan, Mar 27 2018
CROSSREFS
Sequence in context: A006927 A014375 A135748 * A344260 A135327 A128679
KEYWORD
nonn,easy
EXTENSIONS
Name edited by Klaus Brockhaus, Oct 13 2008
STATUS
approved