login
A002695
P_n'(3), where P_n is n-th Legendre polynomial.
(Formerly M4642 N1985)
8
1, 9, 66, 450, 2955, 18963, 119812, 748548, 4637205, 28537245, 174683718, 1064611782, 6464582943, 39132819495, 236256182280, 1423046656008, 8554078990377, 51327262010673, 307488810131530, 1839455028693450
OFFSET
1,2
REFERENCES
H. Bateman, Some problems in potential theory, Messenger Math., 52 (1922), 71-78.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. Bateman, Some problems in potential theory, Messenger Math., 52 (1922), 71-78. [Annotated scanned copy]
John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.
FORMULA
G.f.: x*(1-6*x+x^2)^(-3/2). [corrected by Vaclav Kotesovec, Oct 04 2012]
a(n) = Gegenbauer_C(n,3/2,3). - Paul Barry, Apr 20 2009
D-finite with recurrence: -n*a(n-2) + 3*(2*n-1)*a(n-1) + (1-n)*a(n) = 0. - Vaclav Kotesovec, Oct 04 2012
a(n) ~ (3+2*sqrt(2))^n*sqrt(n)/(4*sqrt(2*Pi)*sqrt(3*sqrt(2)-4)). - Vaclav Kotesovec, Oct 04 2012
a(n) = (n+1) * n * A001003(n)/2, n>0. - Vladimir Kruchinin, Mar 29 2013
a(n) = Sum_{i=1..n} i*binomial(n+i,i)*binomial(n,i)/2. - Gerry Martens, Apr 08 2018
MATHEMATICA
Table[SeriesCoefficient[x*(1-6x+x^2)^(-3/2), {x, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 04 2012 *)
a[n_]:= Sum[(i Binomial[n+i+1, i] Binomial[n+1, i]), {i, 1, n+1}]/2
Table[a[n], {n, 0, 20}] (* Gerry Martens, Apr 08 2018 *)
PROG
(PARI)
N = 66; x = 'x + O('x^N);
gf = x*(1-6*x+x^2)^(-3/2);
Vec(gf)
/* Joerg Arndt, Mar 29 2013 */
CROSSREFS
Cf. A001850.
Sequence in context: A279129 A051375 A081902 * A003408 A037698 A037607
KEYWORD
nonn,easy
STATUS
approved