login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002698
Coefficients of Chebyshev polynomials: n*(2*n-3)*2^(2*n-5).
(Formerly M5059 N2189)
1
1, 18, 160, 1120, 6912, 39424, 212992, 1105920, 5570560, 27394048, 132120576, 627048448, 2936012800, 13589544960, 62277025792, 282930970624, 1275605286912, 5712306503680, 25426206392320, 112562502893568, 495879744126976, 2174833999740928, 9499780463984640
OFFSET
2,2
REFERENCES
Cornelius Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 516.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Cornelius Lanczos, Applied Analysis. (Annotated scans of selected pages)
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
FORMULA
From Amiram Eldar, Feb 17 2023: (Start)
a(n) = A014107(n)*A000079(2*n-5).
Sum_{n>=2} 1/a(n) = 12*log(3) - 64*log(2)/3 + 8/3.
Sum_{n>=2} (-1)^n/a(n) = (8/3)*(arctan(1/2) + 4*log(5/4) - 1). (End)
MAPLE
A002698:=(-1-6*z+8*z**2)/(4*z-1)**3; # [Simon Plouffe in his 1992 dissertation]
MATHEMATICA
Table[n*(2n-3)*2^(2n-5), {n, 2, 30}] (* Amiram Eldar, Feb 17 2023 *)
CROSSREFS
Sequence in context: A060932 A300078 A119004 * A222914 A171642 A158808
KEYWORD
nonn
STATUS
approved