login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A300078 Number of steps of iterating 0 under z^2 + c before escaping, i.e., abs(z^2 + c) > 2, with c = -5/4 - epsilon^2 + epsilon*i, where epsilon = 10^(-n) and i^2 = -1. 3
1, 18, 159, 1586, 15731, 157085, 1570800, 15707976 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A relation between Pi and the Mandelbrot set: 2*a(n)*epsilon converges to Pi.

c = -5/4 - epsilon^2 + epsilon*i is a parabolic route into the point c = -5/4, the second neck of the Mandelbrot set.

The difference between the terms of a(n) and A300077(n) = floor(1/2*Pi*10^n) is d(n) = 0, 3, 2, 16, 24, 6, 4, 13, ...

LINKS

Table of n, a(n) for n=0..7.

Gerald Edgar, Pi and the Mandelbrot set. (The Ohio State University.)

Boris Gourévitch, Pi and fractal sets. The Mandelbrot set -- Dave Boll -- Gerald Edgar. (The World of Pi.)

Aaron Klebanoff, Pi in the Mandelbrot Set. In: Fractals 9 (2001), nr. 4, p. 393-402.

MAPLE

Digits:=2^8:

f:=proc(z, c, k) option remember;

  f(z, c, k-1)^2+c;

end;

a:=proc(n)

local epsilon, c, k;

  epsilon:=10.^(-n):

  c:=-1.25-epsilon^2+epsilon*I:

  f(0, c, 0):=0:

  for k do

    if abs(f(0, c, k))>2 then

      break;

    fi;

  od:

  return(k);

end;

seq(a(n), n=0..7);

PROG

(Python)

from fractions import Fraction

def A300078(n):

    zr, zc, c = Fraction(0, 1), Fraction(0, 1), 0

    cr, cc = Fraction(-5, 4)-Fraction(1, 10**(2*n)), Fraction(1, 10**n)

    zr2, zc2 = zr**2, zc**2

    while zr2 + zc2 <= 4:

        zr, zc = zr2 - zc2 + cr, 2*zr*zc + cc

        zr2, zc2 = zr**2, zc**2

        c += 1

    return c # Chai Wah Wu, Mar 03 2018

CROSSREFS

Cf. A097486, A299415, A300077.

Sequence in context: A171741 A197239 A060932 * A119004 A002698 A222914

Adjacent sequences:  A300075 A300076 A300077 * A300079 A300080 A300081

KEYWORD

nonn,more

AUTHOR

Martin Renner, Feb 24 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 23 21:09 EDT 2021. Contains 345402 sequences. (Running on oeis4.)