login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060932
Fifth convolution of Lucas numbers A000032(n+1), n >= 0.
2
1, 18, 159, 942, 4311, 16536, 55898, 171924, 491487, 1325546, 3409347, 8430246, 20164223, 46880424, 106350942, 236147828, 514553154, 1102562952, 2327442276, 4847463408, 9974081130, 20297335340
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (6,-9,-10,30,6,-41,-6,30,10,-9,-6,-1).
FORMULA
a(n) = A060922(n+5, 5) (sixth column of Lucas triangle).
G.f.: ((1+2*x)/(1-x-x^2))^6.
a(n) = ( 25*(125*n^5 +825*n^4 +1925*n^3 +2895*n^2 +2990*n +744)*L(n+2) +(1875*n^5 +13125*n^4 +31875*n^3 +37875*n^2 +29250*n +19200)*L(n+1))/(5!*5^4), with the Lucas numbers L(n)=A000032(n).
MATHEMATICA
Table[((744+2990*n+2895*n^2+1925*n^3+825*n^4+125*n^5)*LucasL[n+2] +3*(256+390*n + 505*n^2+425*n^3+175*n^4+25*n^5)*LucasL[n+1])/(5^2*5!), {n, 0, 40}] (* G. C. Greubel, Apr 08 2021 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( ((1+2*x)/(1-x-x^2))^6 )); // G. C. Greubel, Apr 08 2021
(Sage)
def A060932_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( ((1+2*x)/(1-x-x^2))^6 ).list()
A060932_list(40) # G. C. Greubel, Apr 08 2021
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Apr 20 2001
STATUS
approved