The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060934 Second column of Lucas bisection triangle (even part). 4
 1, 17, 80, 303, 1039, 3364, 10493, 31885, 95032, 279051, 809771, 2327372, 6636025, 18794633, 52925984, 148303719, 413768263, 1150029940, 3185625077, 8797726981, 24230897416, 66574108227 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Numerator of g.f. is row polynomial Sum_{m=0..3} A061186(2, m)*x^m. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 É. Czabarka, R. Flórez, and L. Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6. Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1). FORMULA a(n) = A060923(n+1, 1). G.f.: (1 + 11*x - 11*x^2 + 4*x^3)/(1 - 3*x + x^2)^2. a(n) = 2*n*Lucas(2*n+2) + Fibonacci(2*n+2). - G. C. Greubel, Apr 09 2021 MATHEMATICA LinearRecurrence[{6, -11, 6, -1}, {1, 17, 80, 303}, 31] (* G. C. Greubel, Apr 09 2021 *) CoefficientList[Series[(1+11x-11x^2+4x^3)/(1-3x+x^2)^2, {x, 0, 30}], x] (* Harvey P. Dale, Aug 28 2021 *) PROG (Magma) [2*n*Lucas(2*n+2) + Fibonacci(2*n+2): n in [0..30]]; // G. C. Greubel, Apr 09 2021 (Sage) [2*n*lucas_number2(2*n+2, 1, -1) + fibonacci(2*n+2) for n in (0..30)] # G. C. Greubel, Apr 09 2021 CROSSREFS Cf. A000032, A000045, A001871, A001906, A002878, A060923, A061186. Sequence in context: A353937 A172045 A338549 * A228602 A100688 A044204 Adjacent sequences: A060931 A060932 A060933 * A060935 A060936 A060937 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Apr 20 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 08:30 EDT 2024. Contains 371893 sequences. (Running on oeis4.)