login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060937
Number of iterations of d(n) (A000005) needed to reach 2 starting at n (n is counted).
7
1, 2, 3, 2, 4, 2, 4, 3, 4, 2, 5, 2, 4, 4, 3, 2, 5, 2, 5, 4, 4, 2, 5, 3, 4, 4, 5, 2, 5, 2, 5, 4, 4, 4, 4, 2, 4, 4, 5, 2, 5, 2, 5, 5, 4, 2, 5, 3, 5, 4, 5, 2, 5, 4, 5, 4, 4, 2, 6, 2, 4, 5, 3, 4, 5, 2, 5, 4, 5, 2, 6, 2, 4, 5, 5, 4, 5, 2, 5, 3, 4, 2, 6, 4, 4, 4, 5, 2, 6, 4, 5, 4, 4, 4, 6, 2, 5, 5, 4, 2, 5, 2, 5, 5, 4
OFFSET
2,2
COMMENTS
By the definition of a(n) we have for n >= 3 the recursion a(n) = a(d(n)) + 1. a(n) = 2 iff n is an odd prime.
REFERENCES
József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, chapter 2, page 66.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 2..10000
Paul Erdős and Imre Kátai, On the growth of d_k(n), Fibonacci Quarterly, Vol. 7, No. 3 (1969), pp. 267-274.
FORMULA
0 < lim sup_{n->oo} (a(n)-1)/log(log(log(n))) < oo (Erdős and Kátai, 1969). - Amiram Eldar, Jul 10 2021
EXAMPLE
If n=12 the trajectory is {12,6,4,3,2}. Its length is 5, thus a(12)=5.
MAPLE
with(numtheory): interface(quiet=true): for n from 2 to 200 do if (1=1) then temp := n: count := 1: end if; while (temp > 2) do temp := tau(temp): count := count + 1: od; printf("%d, ", count); od;
MATHEMATICA
a[n_] := -1 + Length @ FixedPointList[DivisorSigma[0, #] &, n]; Array[a, 100, 2] (* Amiram Eldar, Jul 10 2021 *)
PROG
(PARI) a(n)=my(t=1); while(n>2, n=numdiv(n); t++); t \\ Charles R Greathouse IV, Apr 07 2012
CROSSREFS
Equals A036459 + 1.
Sequence in context: A256542 A101743 A224925 * A162322 A336155 A196930
KEYWORD
nonn,changed
AUTHOR
Ahmed Fares (ahmedfares(AT)my-deja.com), May 06 2001
EXTENSIONS
More terms from Winston C. Yang (winston(AT)cs.wisc.edu), May 21 2001
STATUS
approved