login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060938
Maximal degree of an irreducible representation of a group with n elements.
1
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 4, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 3, 4, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 6, 5, 7, 3, 2, 1, 5, 1, 2, 3, 4, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 3, 2, 1, 6, 1, 5, 3, 2, 1, 6, 1, 2, 1
OFFSET
1,6
COMMENTS
a(n) = 1 iff every group of order n is Abelian i.e. n belongs to sequence A051532.
a(m)a(n) <= a(mn). - Eric M. Schmidt, Oct 17 2012
LINKS
EXAMPLE
a(6) = 2 because for the Abelian group with 6 elements the degrees are all 1 and for the symmetric group S_3 the degrees are 1,1,2.
PROG
(GAP) A060938 := function(n) local max, divs, maxpos, degs, i; if (n=1) then return 1; fi; divs := DivisorsInt(n); maxpos := divs[Int(Length(divs)/2)]; max := 1; for i in [1..NumberSmallGroups(n)] do degs := CharacterDegrees(SmallGroup(n, i)); max := Maximum(max, degs[Length(degs)][1]); if (max = maxpos) then return max; fi; od; return max; end;
CROSSREFS
Cf. A051532.
Sequence in context: A318707 A363228 A235726 * A087942 A359237 A327925
KEYWORD
nonn
AUTHOR
Ahmed Fares (ahmedfares(AT)my-deja.com), May 07 2001
EXTENSIONS
More terms from Eric M. Schmidt, Oct 17 2012
STATUS
approved