login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318707
For any n >= 0 with base-9 representation Sum_{k=0..w} d_k * 9^k, let g(n) = Sum_{k=0..w} s(d_k) * 3^k (where s(0) = 0, s(1+2*j) = i^j and s(2+2*j) = i^j * (1+i) for any j > 0, and i denotes the imaginary unit); a(n) is the square of the modulus of g(n).
2
0, 1, 2, 1, 2, 1, 2, 1, 2, 9, 16, 17, 10, 5, 4, 5, 10, 17, 18, 25, 32, 25, 20, 13, 8, 13, 20, 9, 10, 17, 16, 17, 10, 5, 4, 5, 18, 13, 20, 25, 32, 25, 20, 13, 8, 9, 4, 5, 10, 17, 16, 17, 10, 5, 18, 13, 8, 13, 20, 25, 32, 25, 20, 9, 10, 5, 4, 5, 10, 17, 16, 17
OFFSET
0,3
COMMENTS
See A318705 for the real part of g and additional comments.
LINKS
FORMULA
a(n) = A318705(n)^2 + A318706(n)^2.
a(9 * k) = 9 * a(k) for any k >= 0.
PROG
(PARI) a(n) = my (d=Vecrev(digits(n, 9))); norm(sum(k=1, #d, if (d[k], 3^(k-1)*I^floor((d[k]-1)/2)*(1+I)^((d[k]-1)%2), 0)))
CROSSREFS
Sequence in context: A336336 A168580 A356206 * A363228 A235726 A060938
KEYWORD
nonn,base,look
AUTHOR
Rémy Sigrist, Sep 01 2018
STATUS
approved