login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318706
For any n >= 0 with base-9 representation Sum_{k=0..w} d_k * 9^k, let g(n) = Sum_{k=0..w} s(d_k) * 3^k (where s(0) = 0, s(1+2*j) = i^j and s(2+2*j) = i^j * (1+i) for any j > 0, and i denotes the imaginary unit); a(n) is the imaginary part of g(n).
3
0, 0, 1, 1, 1, 0, -1, -1, -1, 0, 0, 1, 1, 1, 0, -1, -1, -1, 3, 3, 4, 4, 4, 3, 2, 2, 2, 3, 3, 4, 4, 4, 3, 2, 2, 2, 3, 3, 4, 4, 4, 3, 2, 2, 2, 0, 0, 1, 1, 1, 0, -1, -1, -1, -3, -3, -2, -2, -2, -3, -4, -4, -4, -3, -3, -2, -2, -2, -3, -4, -4, -4, -3, -3, -2, -2
OFFSET
0,19
COMMENTS
See A318705 for the real part of g and additional comments.
LINKS
FORMULA
a(9 * k) = 3 * a(k) for any k >= 0.
PROG
(PARI) a(n) = my (d=Vecrev(digits(n, 9))); imag(sum(k=1, #d, if (d[k], 3^(k-1)*I^floor((d[k]-1)/2)*(1+I)^((d[k]-1)%2), 0)))
CROSSREFS
Cf. A318705.
Sequence in context: A061023 A355954 A057690 * A298199 A282623 A090589
KEYWORD
sign,base
AUTHOR
Rémy Sigrist, Sep 01 2018
STATUS
approved