OFFSET
1,1
COMMENTS
A cycle starting with number a of the restricted residue system modulo m (namely the one with the smallest positive numbers RRS(m)) is independent of a cycle starting with number b != a if the set of numbers of the a-cycle is not a (not necessarily proper) subset of the numbers of the b-cycle.
See Table 7, column 4 of the W. Lang link for these numbers.
See also the Table in the W. Lang link given in A282624 for these independent cycles.
LINKS
Wolfdieter Lang, The field Q(2cos(pi/n)), its Galois group and length ratios in the regular n-gon, arXiv:1210.1018 [math.GR], 2012-2017.
EXAMPLE
a(1) = 3 because A033949(1) = 8 with RRS(8) = {1, 3, 5, 7} and the three 2-cycles [3,1],[5,1] and [7,1], which are independent.
a(4) = 4 because A033949(4) = 16 with RRS(16) = {1, 3, 5, 7, 9, 11, 13, 15} and only, e.g., the cycles from 3, 5, 7 and 15 are independent. The cycles [1], [9, 1], [11, 9, 3, 1] and [13, 9, 5, 1] are not independent. One could replace 5 with 13 but we always take the smallest numbers.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Wolfdieter Lang, Mar 03 2017
STATUS
approved