The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A282626 Exponential expansion of the real root y = y(x) of y^3 - 3*x*y - 1. 2
 1, 1, 0, -2, 8, 0, -320, 2800, 0, -344960, 4659200, 0, -1172864000, 21423001600, 0, -9117844736000, 209945415680000, 0, -135381758640128000, 3761801958154240000, 0, -3421097040836034560000, 111349337961365504000000, 0, -135776499356700539617280000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS This is an example of an application of Ramanujan's Master theorem for definite integrals; see eq. (B) on p. 186 of the Hardy reference. This application is given under (ii) on pp. 194-195; here with  r = 1, p = 1, q = 2, and x and a there are y and x here, respectively. The general formula for the exponential expansion of the r-th power of the solution y=y(x) of y^q - q*x*y - 1 = 0 which starts with y(0) = 1 is  y(x)^r  = Sum_{n>=0} lambda(n;r,q,p)*x^n/n! with lambda(0;r,q,p) = 1, lambda(1;r,q,p) = r and lambda(n;r,q,p) = r*Product_{j=1..n-1} (r + n*p - q*j) for n >= 2. Hardy gives a convergence condition for theorem (B) on p. 189: the class K(A,P,delta) for phi(u) = lambda(u) / Gamma(1+u), u complex, here for lambda(u) = lambda(u;r,q,p). REFERENCES G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, ch, XI, pp. 186-211. LINKS G. C. Greubel, Table of n, a(n) for n = 0..400 FORMULA a(n) = Product_{j=1..n-1} (n + 1 - 3*j), n >=0 (empty product = 1). E.g.f.: ((1 + sqrt(1-4*x^3))/2)^(1/3) + x/((1 + sqrt(1-4*x^3))/2)^(1/3). E.g.f.: ((1 + sqrt(1-4*x^3))/2)^(1/3) + ((1 - sqrt(1-4*x^3))/2)^(1/3). MATHEMATICA Table[Product[n+1-3*j, {j, 1, n-1}], {n, 0, 25}] (* G. C. Greubel, Mar 29 2019 *) PROG (PARI) vector(25, n, n--; prod(j=1, n-1, (n+1-3*j))) \\ G. C. Greubel, Mar 29 2019 (MAGMA) [1, 1] cat [(&*[n+1-3*j: j in [1..(n-1)]]): n in [2..25]]; // G. C. Greubel, Mar 29 2019 (Sage) [1] + [product(n+1-3*j for j in (1..(n-1))) for n in (1..25)] # G. C. Greubel, Mar 29 2019 CROSSREFS Cf. A282627. Sequence in context: A209455 A288873 A160636 * A206712 A293777 A200704 Adjacent sequences:  A282623 A282624 A282625 * A282627 A282628 A282629 KEYWORD sign,easy AUTHOR Wolfdieter Lang, Mar 04 2017 EXTENSIONS More terms from G. C. Greubel, Mar 29 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 26 09:25 EDT 2022. Contains 354879 sequences. (Running on oeis4.)