login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282627
Exponential expansion of the square of the real root y = y(x) of y^3 - 3*x*y - 1.
2
1, 2, 2, -4, 0, 80, -560, 0, 49280, -582400, 0, 117286400, -1947545600, 0, 701372672000, -14996101120000, 0, 8461359915008000, -221282468126720000, 0, 180057738991370240000, -5567466898068275200000, 0, 6171659061668206346240000, -220248990487580966912000000, 0
OFFSET
0,2
COMMENTS
See a comment on A282626 on Ramanujan's Master theorem (B) for definite integral, and the Hardy reference.
This is the exponential (aka binomial) convolution of A282626.
LINKS
FORMULA
a(n) = 2*Product_{j=1..n-1}(n + 2 - 3*j), n >= 1, (empty product = 1) and a(0) = 1.
E.g.f.: Square of the e.g.f. of A282626 =
2*x + ((1 + sqrt(1-4*x^3))/2)^(2/3) + ((1 - sqrt(1-4*x^3))/2)^(2/3).
MATHEMATICA
Table[If[n==0, 1, 2*Product[n+2-3*j, {j, 1, n-1}]], {n, 0, 25}] (* G. C. Greubel, Mar 29 2019 *)
PROG
(PARI) vector(25, n, n--; if(n==0, 1, 2*prod(j=1, n-1, (n+2-3*j)))) \\ G. C. Greubel, Mar 29 2019
(Magma) [1, 2] cat [2*(&*[n+2-3*j: j in [1..(n-1)]]): n in [2..25]]; // G. C. Greubel, Mar 29 2019
(Sage) [1] + [2*product(n+2-3*j for j in (1..(n-1))) for n in (1..25)] # G. C. Greubel, Mar 29 2019
CROSSREFS
Cf. A282626.
Sequence in context: A240491 A113750 A355204 * A004565 A068449 A362258
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Mar 04 2017
EXTENSIONS
Terms a(21) onward added by G. C. Greubel, Mar 30 2019
STATUS
approved