OFFSET
0,4
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..115
FORMULA
a(n) = 2^floor(C(n,2)/2)*((sqrt(2)-1)*sin((3*n+1)*Pi/4)/2 +(sqrt(2)+1)*cos((n+1)*Pi/4)/2).
a(4k+1) = 0, a(n) = (-1)^floor((n+2)/4) * 2^A011848(n) if n !== 1 (mod 4), where A011848(n) = floor(C(n,2)/2). - M. F. Hasler, May 09 2018
a(n) = -a(2-n) * 2^A004524(n) for all n in Z. - Michael Somos, Mar 14 2020
MATHEMATICA
Table[Round[2^Floor[Binomial[n, 2]/2]*((Sqrt[2]-1)*Sin[(3*n+1)*Pi/4]/2 + (Sqrt[2]+1)*Cos[(n+1)*Pi/4]/2)], {n, 0, 50}] (* G. C. Greubel, May 03 2018 *)
a[ n_] := -Sign[Mod[n - 1, 4]]*(-1)^Quotient[n - 1, 4]*2^Quotient[n (n - 1), 4]; (* Michael Somos, Mar 14 2020 *)
PROG
(Magma) R:= RealField(); [Round(2^Floor(Binomial(n, 2)/2)*((Sqrt(2)/2 -1/2)*Sin(3*Pi(R)*n/4+Pi(R)/4)+(Sqrt(2)/2+1/2)*Cos(Pi(R)*n/4+Pi(R)/4))): n in [0..50]]; // G. C. Greubel, May 03 2018
(PARI) for(n=0, 50, print1(round(2^floor(binomial(n, 2)/2)*((sqrt(2)-1)*sin((3*n+1)*Pi/4)/2 +(sqrt(2)+1)*cos((n+1)*Pi/4)/2)), ", ")) \\ G. C. Greubel, May 03 2018
(PARI) A160636(n)=if(n%4!=1, (-1)^((n+2)\4)<<(binomial(n, 2)\2), 0) \\ M. F. Hasler, May 09 2018
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, May 21 2009
EXTENSIONS
Comment with an incorrect formula deleted by M. F. Hasler, May 09 2018
STATUS
approved