login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160637
Hankel transform of A114464(n+1).
3
1, 1, -2, -8, -32, -128, 1024, 16384, 262144, 4194304, -134217728, -8589934592, -549755813888, -35184372088832, 4503599627370496, 1152921504606846976, 295147905179352825856, 75557863725914323419136, -38685626227668133590597632, -39614081257132168796771975168
OFFSET
0,3
COMMENTS
Hankel transform of A114464(n) is A160636.
This is a generalized Somos-4 sequence. - Michael Somos, Mar 14 2020
LINKS
FORMULA
a(n) = (-2)^floor(C(n+1,2)/2) = (-2)^A011848(n+1).
0 = a(n)*a(n+4) - 2*a(n+1)*a(n+3) + 4*a(n+2)^2 = a(n)*a(n+5) - 4*a(n+1)*a(n+4) for all n in Z. - Michael Somos, Mar 14 2020
MATHEMATICA
Table[(-2)^Floor[Binomial[n + 1, 2]/2], {n, 0, 50}] (* G. C. Greubel, May 03 2018 *)
a[ n_] := (-2)^Quotient[n (n + 1), 4]; (* Michael Somos, Mar 14 2020 *)
PROG
(PARI) for(n=0, 50, print1((-2)^floor(binomial(n+1, 2)/2), ", ")) \\ G. C. Greubel, May 03 2018
(Magma) [(-2)^Floor(Binomial(n+1, 2)/2): n in [0..50]]; // G. C. Greubel, May 03 2018
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, May 21 2009
STATUS
approved