login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228921
Number of solutions to Sum_{i=1..n} x_i^2 == 0 (mod 8) with x_i in 0..7.
9
2, 8, 32, 128, 3072, 32768, 294912, 2392064, 17825792, 134217728, 1040187392, 8313110528, 67645734912, 549755813888, 4432406249472, 35461397479424, 282574488338432, 2251799813685248, 17979214137393152, 143833163343331328, 1151795604700004352, 9223372036854775808
OFFSET
1,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (16,-96,256,-256,4096,-24576,65536).
FORMULA
G.f.: -2*x*(28672*x^6-9216*x^5+1280*x^4-64*x^3+48*x^2-12*x+1) / ((8*x-1)*(32*x^2-8*x+1)*(256*x^4+1)). - Colin Barker, Nov 10 2014
MATHEMATICA
a[n_]:= a[n]=16 a[n-1]-96 a[n-2] + 256 a[n-3]-256 a[n-4]+4096a[n-5]-24576a[n-6]+ 65536 a[n-7]; Do[a[i] = {2, 8, 32, 128, 3072, 32768, 294912}[[i]], {i, 1, 7}]; Array[a, 33]
PROG
(PARI) a(n)=my(v=vector(8, i, i==1)); for(i=1, n, v+=[2*v[8]+v[5], 2*v[1]+v[6], 2*v[2]+v[7], 2*v[3]+v[8], 2*v[4]+v[1], 2*v[5]+v[2], 2*v[6]+v[3], 2*v[7]+v[4]]); v[1]<<n \\ Charles R Greathouse IV, Sep 15 2013
(PARI) Vec(-2*x*(28672*x^6-9216*x^5+1280*x^4-64*x^3+48*x^2-12*x+1)/((8*x-1)*(32*x^2-8*x+1)*(256*x^4+1)) + O(x^100)) \\ Colin Barker, Nov 10 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
a(10)-a(22) from Charles R Greathouse IV, Sep 15 2013
STATUS
approved