login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228918
Alternating sum of inverse of increasing integers with a difference of 0, 1, 2, 3, ...: 1 - 1/2 + 1/4 - 1/7 + 1/11 - 1/16 + 1/22 - 1/29 + 1/37 + ... i.e., alternating series based on A226985.
2
6, 6, 1, 5, 7, 0, 1, 9, 2, 0, 7, 3, 5, 8, 5, 1, 1, 2, 0, 4, 4, 5, 7, 3, 8, 9, 2, 8, 4, 6, 0, 7, 9, 3, 9, 5, 2, 1, 7, 6, 4, 2, 4, 6, 6, 5, 8, 9, 5, 5, 6, 9, 7, 9, 8, 6, 9, 1, 9, 8, 4, 8, 5, 4, 5, 0, 1, 8, 9, 5, 0, 9, 7, 9, 4, 2, 6, 0, 1, 7, 2, 0, 7, 5, 9, 5, 8, 8, 8, 7, 7, 9, 1, 1, 8, 6, 9, 3, 7, 2, 4, 4, 9, 2, 7, 9, 4, 8
OFFSET
0,1
FORMULA
See Mathematica program. - Joerg Arndt, Sep 09 2013
EXAMPLE
0.66157019207358511204457389...
MAPLE
c:= Sum( (-1)^k/(1+binomial(k+1, 2)), k=0..infinity):
Re(evalf(c, 120)); # Alois P. Heinz, Sep 09 2013
MATHEMATICA
N[((-2 I) (LerchPhi[-1, 1, 1/2 - (I/2) Sqrt[7]] - LerchPhi[-1, 1, 1/2 + (I/2) Sqrt[7]]))/Sqrt[7], 99] (* Joerg Arndt, Sep 09 2013 *)
-(2*Im[PolyGamma[(1-I*Sqrt[7])/4] - PolyGamma[(3-I*Sqrt[7])/4]])/Sqrt[7] // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Sep 10 2013 *)
PROG
(PARI) default(realprecision, 133); sumalt(k=1, 1/(1+k*(k-1)/2)*(-1)^(k+1))
(PARI) -(2*imag(psi((1-I*sqrt(7))/4)-psi((3-I*sqrt(7))/4)))/sqrt(7) \\ sumalt is faster; Charles R Greathouse IV, Sep 10 2013
CROSSREFS
Sequence in context: A133890 A248059 A111719 * A200281 A199864 A153605
KEYWORD
nonn,cons
AUTHOR
Didier Guillet, Sep 08 2013
EXTENSIONS
More terms from Joerg Arndt, Sep 09 2013
STATUS
approved