login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Alternating sum of inverse of increasing integers with a difference of 0, 1, 2, 3, ...: 1 - 1/2 + 1/4 - 1/7 + 1/11 - 1/16 + 1/22 - 1/29 + 1/37 + ... i.e., alternating series based on A226985.
2

%I #35 Jan 04 2022 21:50:10

%S 6,6,1,5,7,0,1,9,2,0,7,3,5,8,5,1,1,2,0,4,4,5,7,3,8,9,2,8,4,6,0,7,9,3,

%T 9,5,2,1,7,6,4,2,4,6,6,5,8,9,5,5,6,9,7,9,8,6,9,1,9,8,4,8,5,4,5,0,1,8,

%U 9,5,0,9,7,9,4,2,6,0,1,7,2,0,7,5,9,5,8,8,8,7,7,9,1,1,8,6,9,3,7,2,4,4,9,2,7,9,4,8

%N Alternating sum of inverse of increasing integers with a difference of 0, 1, 2, 3, ...: 1 - 1/2 + 1/4 - 1/7 + 1/11 - 1/16 + 1/22 - 1/29 + 1/37 + ... i.e., alternating series based on A226985.

%F See Mathematica program. - _Joerg Arndt_, Sep 09 2013

%e 0.66157019207358511204457389...

%p c:= Sum( (-1)^k/(1+binomial(k+1, 2)), k=0..infinity):

%p Re(evalf(c, 120)); # _Alois P. Heinz_, Sep 09 2013

%t N[((-2 I) (LerchPhi[-1, 1, 1/2 - (I/2) Sqrt[7]] - LerchPhi[-1, 1, 1/2 + (I/2) Sqrt[7]]))/Sqrt[7], 99] (* _Joerg Arndt_, Sep 09 2013 *)

%t -(2*Im[PolyGamma[(1-I*Sqrt[7])/4] - PolyGamma[(3-I*Sqrt[7])/4]])/Sqrt[7] // RealDigits[#, 10, 100]& // First (* _Jean-François Alcover_, Sep 10 2013 *)

%o (PARI) default(realprecision,133); sumalt(k=1, 1/(1+k*(k-1)/2)*(-1)^(k+1))

%o (PARI) -(2*imag(psi((1-I*sqrt(7))/4)-psi((3-I*sqrt(7))/4)))/sqrt(7) \\ sumalt is faster; _Charles R Greathouse IV_, Sep 10 2013

%Y Cf. A226985, A000124.

%K nonn,cons

%O 0,1

%A _Didier Guillet_, Sep 08 2013

%E More terms from _Joerg Arndt_, Sep 09 2013